У нас вы можете посмотреть бесплатно FM4CS: A Versatile Foundation Model for Earth Observation Applications: Arnt-Børre Salberg (NR) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Arnt-Børre Salberg, Chief Research Scientist at the Department for Image Analysis, Machine Learning and Earth Observation at the Norwegian Computing Center, gave a presentation titled "FM4CS: A Versatile Foundation Model for Earth Observation Climate and Society Applications" on June 5th 2025 as part of the Visual Intelligence Online Seminar Series Abstract: As deep learning transforms earth observation (EO) analysis, foundation models offer a promising alternative to traditional supervised learning by addressing data labeling challenges through large-scale, self-supervised learning. The FM4CS model, developed for the European Space Agency, is a versatile multimodal foundation model tailored for climate and society EO applications. It supports four different Sentinel sensors: Sentinel-1 SAR, Sentinel-2 MSI, Sentinel-3 OLCI, and Sentinel-3 SLSTR, with resolutions ranging from 10 m to 1000 m. Evaluations across various benchmark EO tasks demonstrate FM4CS's robustness and adaptability, establishing it as a strong foundation for diverse EO applications.