• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Benoît Mandelbrot - Multifractals (90/144) скачать в хорошем качестве

Benoît Mandelbrot - Multifractals (90/144) 8 лет назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Benoît Mandelbrot - Multifractals (90/144)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Benoît Mandelbrot - Multifractals (90/144) в качестве 4k

У нас вы можете посмотреть бесплатно Benoît Mandelbrot - Multifractals (90/144) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Benoît Mandelbrot - Multifractals (90/144) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Benoît Mandelbrot - Multifractals (90/144)

To listen to more of Benoît Mandelbrot’s stories, go to the playlist:    • Benoît Mandelbrot - Family background and ...   The late French-American mathematician Benoît Mandelbrot (1924-2010) discovered his ability to think about mathematics in images while working with the French Resistance, and is famous for his work on fractal geometry, the maths of the shapes found in nature. [Listeners: Bernard Sapoval and Daniel Zajdenweber; date recorded: 1998]. TRANSCRIPT: I would like to add a few words to these examples about mathematics, the limit set of Kleinian groups, iteration of z2+c and the four thirds. One of the fields which my work opened is that of multifractals. Now, multifractals are measures which mean the following: most fractals are sets, which means that you are either in a set or outside; you have a straight line, you are either on the line or outside; a circle, either on the circle or outside, either in the disc which is inside the circle or outside. Therefore it's a matter of black and white. If you are black and if you are inside, they are white on the outside, if you think of a printed picture of a set infinitely fine. But most of physics is concerned with shades of grey. Things are not black and white, don't have nice weather and stormy weather- more or less stormy. And one of the most important structures, which I introduced over the years is that of multifractals. Now I would like to emphasise again its roots in preceding mathematics that I did before very strongly. Some multifractals were known in the literature, again in this collection of esoterica, pathology etc. Very few - just a hint of some complication was known. I began to study them in the context of 'intermittency' of turbulence. Turbulence is not something that comes as no turbulence, then turbulence; but no turbulence ,then turbulence at a more or less higher levels of intensity. And a concept that is very important, and that I hope to discuss in the part concerned with physics, is that of intermittency. I constructed a model for it and encountered some contradictions, some paradoxes. The formalism was becoming ridiculous if the parameter was above a certain value. Now, if you encounter ridiculous phenomena in mathematics there are many possibilities. One is that you made a mistake and it is very often the case. Sometimes, often in my experience, it means that if you look carefully there is something very interesting hidden in the paradox. And in this case - this was the case. Now how did I approach it? First, not by analysis. Not because I couldn't do it; I could do it and I did it shortly afterwards, at least up to a point. Because I wanted to understand in my fingers what was happening. Therefore it was in the early '70s I would say, around 1970 or perhaps even slightly before that with heroic calculations - because then computers were very slow, and these were very big calculations - I tried to make constructions both below and above this threshold where things were getting funny, and acquired a very concrete feeling of what becoming funny meant. It is not a feeling in mathematics that says, in this case, that the measure of the generator is almost surely zero, in the other case it's a well-defined limit. That is something very important, but it is not the whole thing. I looked at those shapes, I looked at what becoming degenerate meant. And only after having this very strong feeling did I collect my thoughts and show by heuristic, meaning incomplete and not completely rigorous arguments, that indeed where the parameter, when things start becoming funny, a certain result that was quite unexpected and that again informed the degeneracy. I would not like to emphasis the details because it's a delicate issue, though I believe that a few questions were later to give much work to mathematician friends because it became very difficult to prove my loose arguments to be correct. All those difficulties were not of an artificial kind, not of a hypothetical kind, not of a kind that refers only in infinity and are in the limit where nobody can have any feeling for what's happening. Look, one sees them occurring. In mathematics the idea that refined results, difficult results, are beyond intuition, are beyond the eye and almost the hand that idea I think was simply, simply wrong. The advent of the computer and the use of computer as we did to create computer graphics for our purposes, to expand its uses, have shown it again and again and again.

Comments
  • Benoît Mandelbrot - Meeting at Courchevel (91/144) 8 лет назад
    Benoît Mandelbrot - Meeting at Courchevel (91/144)
    Опубликовано: 8 лет назад
  • Бенуа Мандельброт: Фракталы и искусство изломанности 15 лет назад
    Бенуа Мандельброт: Фракталы и искусство изломанности
    Опубликовано: 15 лет назад
  • Benoît Mandelbrot - Multifractal time as trading time (132/144) 8 лет назад
    Benoît Mandelbrot - Multifractal time as trading time (132/144)
    Опубликовано: 8 лет назад
  • Benoît Mandelbrot - Family background and early education (1/144) 8 лет назад
    Benoît Mandelbrot - Family background and early education (1/144)
    Опубликовано: 8 лет назад
  • Мишель Ансмейер: создавая невообразимые формы 13 лет назад
    Мишель Ансмейер: создавая невообразимые формы
    Опубликовано: 13 лет назад
  • What is fractal geometry? │ The History of Mathematics with Luc de Brabandère 5 лет назад
    What is fractal geometry? │ The History of Mathematics with Luc de Brabandère
    Опубликовано: 5 лет назад
  • The Mandelbrot Set 7 лет назад
    The Mandelbrot Set
    Опубликовано: 7 лет назад
  • Fractals are typically not self-similar 8 лет назад
    Fractals are typically not self-similar
    Опубликовано: 8 лет назад
  • Как строили корабли для мирового господства 11 дней назад
    Как строили корабли для мирового господства
    Опубликовано: 11 дней назад
  • Это уравнение изменит ваш взгляд на мир 5 лет назад
    Это уравнение изменит ваш взгляд на мир
    Опубликовано: 5 лет назад
  • Путешествие во фракталы: множество Кантора и троичное разложение. 2 года назад
    Путешествие во фракталы: множество Кантора и троичное разложение.
    Опубликовано: 2 года назад
  • This open problem taught me what topology is 11 месяцев назад
    This open problem taught me what topology is
    Опубликовано: 11 месяцев назад
  • Quantifying Fractal & Multifractal Scaling Exponents of Geophysics Data 6 лет назад
    Quantifying Fractal & Multifractal Scaling Exponents of Geophysics Data
    Опубликовано: 6 лет назад
  • Benoît Mandelbrot - The future for fractals (144/144) 8 лет назад
    Benoît Mandelbrot - The future for fractals (144/144)
    Опубликовано: 8 лет назад
  • Что такое мультифрактальный анализ? Современная фрактальная геометрия и мои исследования 1 год назад
    Что такое мультифрактальный анализ? Современная фрактальная геометрия и мои исследования
    Опубликовано: 1 год назад
  • Основные теоремы в теории игр — Алексей Савватеев на ПостНауке 5 лет назад
    Основные теоремы в теории игр — Алексей Савватеев на ПостНауке
    Опубликовано: 5 лет назад
  • Каково это — изобретать математику? 10 лет назад
    Каково это — изобретать математику?
    Опубликовано: 10 лет назад
  • Самый важный алгоритм в истории [Veritasium] 3 года назад
    Самый важный алгоритм в истории [Veritasium]
    Опубликовано: 3 года назад
  • Как «увидеть» четвертое измерение с помощью топологии 7 месяцев назад
    Как «увидеть» четвертое измерение с помощью топологии
    Опубликовано: 7 месяцев назад
  • Путешествие в заквантовый мир. Визуализация субатомных частиц, вирусов, и молекул 7 месяцев назад
    Путешествие в заквантовый мир. Визуализация субатомных частиц, вирусов, и молекул
    Опубликовано: 7 месяцев назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5