У нас вы можете посмотреть бесплатно ML Engineer: Deploy & Scale AI Models in Production или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🚀 Become a Machine Learning Engineer! Learn how to deploy and scale AI models in real-world production systems. 🤖 This complete guide covers the ML production pipeline from data collection to live deployment. Discover key challenges like performance, scalability, and monitoring that every ML Engineer must master. 🐳 Master essential technologies: Docker containerization, Kubernetes orchestration, AWS SageMaker, Google Vertex AI, and Azure ML Services. 💻 See real code examples for model serving with Flask APIs and learn continuous monitoring techniques to keep models accurate over time. 🔧 Build skills in Python programming, cloud infrastructure, and data engineering to land high-paying ML Engineer roles. #MachineLearning #MLOps #AI #DataScience #DevOps #Kubernetes #Docker #CloudComputing #ProductionML Chapters: 00:00 - Machine Learning Engineer: Building AI Production Systems 00:28 - What Does an ML Engineer Do? 01:05 - ML Production Pipeline 01:42 - Key Challenges in Production 02:23 - Deployment Technologies 03:01 - Model Serving Example 03:40 - Monitoring and Maintenance 04:25 - Key Skills Required 05:13 - Outro 🔗 Stay Connected: ▶️ YouTube: / @thecodelucky 📱 Instagram: / thecodelucky 📘 Facebook: / codeluckyfb 🌐 Website: https://codelucky.com ⭐ Support us by Liking, Subscribing, and Sharing! 💬 Drop your questions in the comments below 🔔 Hit the notification bell to never miss an update #CodeLucky