У нас вы можете посмотреть бесплатно Machine Learning Assignment -1 Topic:- -Instance-Based Learning knn Decision Tree, Naive Bayes, ANN или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
on topic:- -Instance-Based Learning (k-Nearest Neighbours), Training Models
(Linear Regression), Decision Tree, Naive Bayes, ANN (Artificial Neural Network).
Code Implementation
Below is the Python implementation of the models used in this study:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, precision_score,
recall_score, f1_score
Sample dataset
data = {
'Annual_Spending': [500, 1500, 3000, 700, 2500, 1000, 3500,
1200, 800, 2800],
'Avg_Transaction_Value': [50, 150, 300, 70, 250, 100, 350,
120, 80, 280],
'Purchase_Frequency': [10, 10, 10, 10, 10, 10, 10, 10, 10,
10],
'Customer_Tenure': [2, 5, 7, 3, 6, 4, 8, 3, 2, 7],
'Spending_Category': ['Low', 'Medium', 'High', 'Low', 'High',
'Medium', 'High', 'Medium', 'Low', 'High']
}
df = pd.DataFrame(data)
Encoding categorical values
df['Spending_Category'] = df['Spending_Category'].map({'Low': 0,
'Medium': 1, 'High': 2})
Splitting dataset
X = df.drop(columns=['Spending_Category'])
y = df['Spending_Category']
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
Standardizing the dataset
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
5
k-NN Model
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_pred_knn = knn.predict(X_test)
Decision Tree Model
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
y_pred_dt = dt.predict(X_test)
Naive Bayes Model
nb = GaussianNB()
nb.fit(X_train, y_train)
y_pred_nb = nb.predict(X_test)
Performance Evaluation
def evaluate_model(y_true, y_pred, model_name):
print(f'Performance of {model_name}:')
print(f'Accuracy: {accuracy_score(y_true, y_pred):.2f}')
print(f'Precision: {precision_score(y_true, y_pred,
average="weighted"):.2f}')
print(f'Recall: {recall_score(y_true, y_pred,
average="weighted"):.2f}')
print(f'F1-score: {f1_score(y_true, y_pred,
average="weighted"):.2f}')
print('
')
Evaluating each model
evaluate_model(y_test, y_pred_knn, 'k-NN')
evaluate_model(y_test, y_pred_dt, 'Decision Tree')
evaluate_model(y_test, y_pred_nb, 'Naive Bayes')