У нас вы можете посмотреть бесплатно vitaLITy 2: Reviewing Academic Literature Using Large Language Models | Demo | NLVIZ (IEEE VIS 2024) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Abstract: Academic literature reviews have traditionally relied on techniques such as keyword searches and accumulation of relevant back-references, using databases like Google Scholar or IEEEXplore. However, both the precision and accuracy of these search techniques is limited by the presence or absence of specific keywords, making literature review akin to searching for needles in a haystack. We present vitaLITy 2, a solution that uses a Large Language Model or LLM-based approach to identify semantically relevant literature in a textual embedding space. We include a corpus of 66,692 papers from 1970-2023 which are searchable through text embeddings created by three language models. vitaLITy 2 contributes a novel Retrieval Augmented Generation (RAG) architecture and can be interacted with through an LLM with augmented prompts, including summarization of a collection of papers. vitaLITy 2 also provides a chat interface that allow users to perform complex queries without learning any new programming language. This also enables users to take advantage of the knowledge captured in the LLM from its enormous training corpus. Finally, we demonstrate the applicability of vitaLITy 2 through two usage scenarios. vitaLITy 2 is available as open-source software at https://vitality-vis.github.io.