У нас вы можете посмотреть бесплатно Day 49: Implementing Anomaly Detection Algorithms for Distributed Log Processing или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
On Day 49, you build a production-grade anomaly detection system that continuously analyzes distributed log streams and flags abnormal behavior in real time—before incidents escalate into outages or security breaches. This lesson walks through multiple complementary detection strategies. You’ll implement statistical anomaly detection using Z-score and IQR methods to identify sudden spikes or drops in numeric metrics like error rates and latency. You’ll layer this with time-series baseline analysis, enabling the system to recognize deviations from historical norms while accounting for seasonality and trends. To capture more complex failure patterns, you’ll add multi-dimensional clustering that detects outliers across correlated attributes—such as service name, endpoint, response time, and error code—revealing anomalies that single-metric thresholds would miss. An adaptive thresholding engine continuously learns normal behavior and dynamically adjusts sensitivity, preventing alert storms during traffic surges or deployments. Finally, you integrate a real-time alerting pipeline that assigns confidence scores, suppresses low-signal noise, and escalates only high-impact anomalies to downstream monitoring and security systems. By the end of this lesson, you’ll have an anomaly detection engine capable of operating at massive scale with sub-second latency—forming the backbone of proactive observability systems used by companies like Netflix, Uber, and Amazon. #AnomalyDetection #DistributedSystems #Observability #RealTimeAnalytics #LogProcessing