У нас вы можете посмотреть бесплатно [WACV'25 Tutorial] Inferential Machine Learning: Towards Human-collaborative Foundation Models или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Neural network driven applications like ChatGPT suffer from hallucinations where they confidently provide inaccurate information. A fundamental reason for this inaccuracy is the feed-forward nature of inductive decisions taken by neural networks. Such decisions are a result of training schemes that do not allow networks to deviate from and creatively abduce reasons at inference. With the advent of foundation models that are adapted across applications and data, humans can directly intervene and prompt vision-language foundation models. However, without understanding the operational limits of the underlying networks, human interventions often lead to unfair, inaccurate, hallucinated and unintelligible outputs. These outputs undermine the trust in foundation models, thereby causing roadblocks to their adoption in everyday lives. In this tutorial, we review systematic ways to analyze and understand human interventions in neural network functionality at inference. Specifically, our insights are the following: 1) decision theory must be abductive rather than deductive or inductive, 2) interventions must be analyzed as a function of the ‘not-taken’ residual interventions, 3) interventions are not always positive and networks must be equipped to detect unfair and adversarial decisions and interactions. The end goal is to promote a human-AI collaborative environment via inferential machine learning techniques. PDF link: https://bpb-us-e1.wpmucdn.com/sites.g... Website link: https://alregib.ece.gatech.edu/course...