У нас вы можете посмотреть бесплатно Basic Fluid Dynamics: Derivations of Bernoulli's equation, Part 3, The incompressible flows или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Chanel: Science of Fluids, / scienceoffluids Playlist: Fluids made easy: 06- Fundamentals of potential flow theory • Плейлист This talk provides an introduction on why we need to derive the Bernoulli's equation for potential flows, and the derivation of the Bernoulli's equation for potential flows. Relatively, under the assumption of potential flows, the Bernoulli's equation can be more easily derived and in fact more useful in practical applications, since finding out the streamlines is not an easy task, even when the flow field is solved, while the Bernoulli's equation for potential flows is valid for the entire flow field, thus the application is easy and mush more straightforward. As a specific example, the unsteady Bernoulli's equation is used for deriving the dynamic boundary condition for the ocean wave, which is a rare case for the applications of unsteady Bernoulli's equation. In this talk, following contents are included: Euler equation in vector form Why Bernoulli’s equation for potential flows? Assumptions of potential flows Derivation of the unsteady Bernoulli’s equation An application of the unsteady Bernoulli’s equation: the free surface boundary condition for water waves