• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

RLHF+CHATGPT: What you must know скачать в хорошем качестве

RLHF+CHATGPT: What you must know 2 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
RLHF+CHATGPT: What you must know
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: RLHF+CHATGPT: What you must know в качестве 4k

У нас вы можете посмотреть бесплатно RLHF+CHATGPT: What you must know или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон RLHF+CHATGPT: What you must know в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



RLHF+CHATGPT: What you must know

Pod version: https://podcasters.spotify.com/pod/sh... Support us!   / mlst   MLST Discord:   / discord   In this video, Minqi Jiang (https://minch.co/), a research scientist at University College London & Meta AI, discusses the capabilities of language models like GPT-3 and the effects of Reinforcement Learning from Human Feedback (RLHF) on these models. He explains how RLHF helps make language models more user-friendly by providing a more reliable interface to specific parts of the model, but also reduces the diversity of their outputs, which might be less desirable for certain creative tasks. Minqi explains that a base language model, like GPT-3, is essentially trained to model the whole internet of text. This vast distribution covers both good and bad content, creating a chaotic and enormous model that can provide a wide range of responses. When prompted with a task, it's difficult to anticipate how the model will complete it. RLHF comes into play by fine-tuning the model on a reward signal that is learned from human preference data. This process introduces a bias into the model, making it more likely to generate outputs that were favored by the humans providing the preference data. This results in more reliable answers, but at the cost of diversity in the model's output. The process of RLHF can be thought of as a pruning process, where the aim is to remove the bad or undesired parts of the probability distribution and focus on the good ones. This can be seen as a form of robustification, but also potentially reduces the model's creativity, as it becomes more convergent in its outputs. In conclusion, RLHF provides a useful way to fine-tune language models to provide more reliable and user-friendly outputs, but it can also reduce the diversity and creativity of the model's outputs. This trade-off between reliability and diversity is important to consider when using language models for various tasks and applications. Credit for shoggoth meme:   / anthrupad  

Comments
  • But what is a neural network? | Deep learning chapter 1 7 years ago
    But what is a neural network? | Deep learning chapter 1
    Опубликовано: 7 years ago
    19446457
  • How might LLMs store facts | DL7 8 months ago
    How might LLMs store facts | DL7
    Опубликовано: 8 months ago
    1381231
  • How AI Image Generators Work (Stable Diffusion / Dall-E) - Computerphile 2 years ago
    How AI Image Generators Work (Stable Diffusion / Dall-E) - Computerphile
    Опубликовано: 2 years ago
    1001166
  • GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem 8 months ago
    GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem
    Опубликовано: 8 months ago
    120550
  • Generative AI in a Nutshell - how to survive and thrive in the age of AI 1 year ago
    Generative AI in a Nutshell - how to survive and thrive in the age of AI
    Опубликовано: 1 year ago
    3192957
  • The Breakthrough Behind Modern AI Image Generators | Diffusion Models Part 1 7 months ago
    The Breakthrough Behind Modern AI Image Generators | Diffusion Models Part 1
    Опубликовано: 7 months ago
    24118
  • #104 - Prof. CHRIS SUMMERFIELD - Natural General Intelligence [SPECIAL EDITION] 2 years ago
    #104 - Prof. CHRIS SUMMERFIELD - Natural General Intelligence [SPECIAL EDITION]
    Опубликовано: 2 years ago
    22912
  • How to Improve LLMs with RAG (Overview + Python Code) 1 year ago
    How to Improve LLMs with RAG (Overview + Python Code)
    Опубликовано: 1 year ago
    126695
  • The Inside Story of ChatGPT’s Astonishing Potential | Greg Brockman | TED 2 years ago
    The Inside Story of ChatGPT’s Astonishing Potential | Greg Brockman | TED
    Опубликовано: 2 years ago
    1835610
  • How AI Could Save (Not Destroy) Education | Sal Khan | TED 2 years ago
    How AI Could Save (Not Destroy) Education | Sal Khan | TED
    Опубликовано: 2 years ago
    1844153

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS