• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Hamza Tahir - Why ML in production is STILL broken? скачать в хорошем качестве

Hamza Tahir - Why ML in production is STILL broken? 4 years ago

machine learning

data science

mlops

devops

deep learning research

ai

deep learning

ml

artificial intelligence

mlops community

machine learning engineer

automated ml

automation

workshop

ml engineering

machine learning tutorial

data engineers

data engineering

data engineer

Hamza Tahir

Why ML in production is STILL broken?

ML in production

software development

software engineer

ML in production is STILL broken

what is machine learning

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Hamza Tahir - Why ML in production is STILL broken?
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Hamza Tahir - Why ML in production is STILL broken? в качестве 4k

У нас вы можете посмотреть бесплатно Hamza Tahir - Why ML in production is STILL broken? или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Hamza Tahir - Why ML in production is STILL broken? в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Hamza Tahir - Why ML in production is STILL broken?

💻 Abstract:   Why ML in production is STILL broken? Around 87% of machine learning projects do not survive to make it to production. There is a disconnect between machine learning being done in Jupyter notebooks on local machines and actually being served to end-users to provide some actual value. The oft-quoted Hidden Technical Debt paper, by Scully et. al., has been in circulation since 2017, yet still, ML in production has ways to go to catch up to the quality standards attained by more conventional software development. This talk will aim to break down the key aspects of what sets machine learning apart from traditional software engineering, and how treating data as a first-class citizen is a fundamental shift in our understanding of complex production ML systems. 🔊 Speaker bio: CTO, maiot GmbH Hamza Tahir is a software engineer cum machine learning engineer based in Munich, Germany. He has a passion for trying to connect the dots between his various learning experiences and to continually learn and grow from new challenges. Hamza is currently co-founding his ML startup, maiot, with the aim of bringing proper software engineering practices into machine learning workflows. If you enjoyed this talk, visit us at https://mlopsworld.com/ and come participate in our next gathering! 💼 Would you like to receive email summaries of these talks? Join our newsletter FREE here: http://bit.ly/MLOps_Summaries 📧 Timestamps: 0:00 Intro 0:23 Getting to know Hamza Tahir 2:35 The hidden technical debt paper 3:38 Why 87% of ML projects never making it into production 5:05 Traditional solutions for technical debt 5:55 Debt in ML is more Complicated 8:54 The generic ML journey 9:08 The Baseline 11:00 Data Changes 12:44 Model Goes Stale 14:28 Upstream Feature Changes 18:17 Systems tend to fail faster, harder, and silently 19:28 SOTA Production-ready ML architecture 21:19 ML in production is (still) broken ❓ Q&A section ❓ 22:17 Data structure and also meaning 24:27 Can you go into more detail about the framework and solution to resolve these issues? 27:25 Where the 87% code is coming from. 28:22 How can I learn more about the feature store? 29:19 How do you view two open-source tools like ml flow? 30:35 Is it better to have an opinionated architecture? 33:00 Considering the fact that you're in Munich, have you considered adding additional or possibly multiple boxes, which are titled beer in the architecture, in order to ease the transitions between various boxes in dealing with ml projects? 33:33 Do you have suggestions on communicating with stakeholders? 35:08 What are your thoughts on handling data drift? 36:48 Any advice to avoid having to rewrite pre-processing? 39:01 What is the cost associated with implementing this ETL pipeline? Rough order of magnitude? 40:11 May you explain the distributed learning in a product? How we can manage data, and the learning process easily? 42:30 Closing remarks

Comments
  • DevOps for ML and other Half Truths: Processes and Tools for the ML Lifecycle 4 years ago
    DevOps for ML and other Half Truths: Processes and Tools for the ML Lifecycle
    Опубликовано: 4 years ago
    240
  • 1. Introduction and Matrix Multiplication 3 years ago
    1. Introduction and Matrix Multiplication
    Опубликовано: 3 years ago
    224541
  • What do tech pioneers think about the AI revolution? - BBC World Service 9 months ago
    What do tech pioneers think about the AI revolution? - BBC World Service
    Опубликовано: 9 months ago
    1654780
  • Gradient descent, how neural networks learn | DL2 7 years ago
    Gradient descent, how neural networks learn | DL2
    Опубликовано: 7 years ago
    7830201
  • Building GenAI-Powered Apps: A Workshop for Software Engineers 3 months ago
    Building GenAI-Powered Apps: A Workshop for Software Engineers
    Опубликовано: 3 months ago
    571
  • How to Secure AI Business Models 1 year ago
    How to Secure AI Business Models
    Опубликовано: 1 year ago
    50524
  • MLOps explained | Machine Learning Essentials 3 years ago
    MLOps explained | Machine Learning Essentials
    Опубликовано: 3 years ago
    200069
  • Пропаганда требует расстрелов | z-военкоры грустят (English subtitles) @Max_Katz 20 hours ago
    Пропаганда требует расстрелов | z-военкоры грустят (English subtitles) @Max_Katz
    Опубликовано: 20 hours ago
    646194
  • Evolution of software architecture with the co-creator of UML (Grady Booch) 5 months ago
    Evolution of software architecture with the co-creator of UML (Grady Booch)
    Опубликовано: 5 months ago
    182647
  • End-to-end MLOps with Vertex AI 3 years ago
    End-to-end MLOps with Vertex AI
    Опубликовано: 3 years ago
    64420

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5