У нас вы можете посмотреть бесплатно Lipschitz learning and the infinity-Laplacian или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Speaker: Miguel Urbano (KAUST, Saudi Arabia) Abstract: Infinity-harmonic functions have recently found application in Semi-Supervised Learning in the context of the so-called Lipschitz Learning. With this application in mind, we will discuss the Lipschitz extension problem, its solution via MacShane-Whitney extensions and its several drawbacks, leading to the notion of AMLE (Absolutely Minimising Lipschitz Extension). We then address the equivalence between being absolutely minimising Lipschitz, enjoying comparison with cones and solving the infinity-Laplace equation in the viscosity sense. We will present a few regularity results and discuss open problems if time permits