У нас вы можете посмотреть бесплатно Image Classification Computer Vision with Hugging Face Transformers -Google ViT - Python ML Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this Python tutorial, You'll learn how to use the very latest Hugging Face model (on Model Hub)- Computer Vision Vision Transfomers (ViT Model from Google) to do Image Classification using Hugging Face Transformers (all in Transformers api). Hugging Face is quite popular for NLP but this time it's about Computer Vision and Image Classification. This video introduces the latest ViT Model from Hugging Face Model Hub Demonstrates ViT Image Classification with Hosted Inference API Google Colab Python Code Walk through for Image Classification with Hugging Face Transformers With Computer Vision from Hugging Face Transformers, I hope more things to come! Colab Code - https://colab.research.google.com/dri... Hugging Face ViT - https://huggingface.co/google/vit-bas... Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Dosovitskiy et al. and first released in this repository. However, the weights were converted from the timm repository by Ross Wightman, who already converted the weights from JAX to PyTorch. Credits go to him.