У нас вы можете посмотреть бесплатно Prompt Engineering: Reasoning through Perspective Transition (RPT) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Buy my book about prompt engineering: US: https://www.amazon.com/dp/B0GLQBS28S IN: https://www.amazon.in/dp/B0GLQBS28S UK: https://www.amazon.co.uk/dp/B0GLQBS28S BR: https://www.amazon.com.br/dp/B0GLQBS28S This research explores cross-lingual reasoning generalization in Large Reasoning Models (LRMs) to determine if mathematical skills learned in English transfer to other languages. The authors introduce the Multilingual Transferability Index (MTI) and find that while Reinforcement Post-Training (RPT) enhances reasoning, models often over-rely on English-specific patterns, hindering universal transfer. Through interventional studies, they identify a First-Parallel Leap, where adding just one parallel language during training significantly boosts multilingual performance. Furthermore, they establish a Parallel Scaling Law, proving that cross-lingual transfer follows a predictable power-law relationship with the number of training languages. Despite these gains, a Monolingual Generalization Gap remains, suggesting current models do not yet mirror the language-agnostic nature of human cognition. Ultimately, the study advocates for parallel training as a critical strategy for developing more language-agnostic and globally effective AI models.