У нас вы можете посмотреть бесплатно How GPT-5 Thinks — OpenAI VP of Research Jerry Tworek или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
What does it really mean when GPT-5 “thinks”? In this conversation, OpenAI’s VP of Research Jerry Tworek explains how modern reasoning models work in practice—why pretraining and reinforcement learning (RL/RLHF) are both essential, what that on-screen “thinking” actually does, and when extra test-time compute helps (or doesn’t). We trace the evolution from O1 (a tech demo good at puzzles) to O3 (the tool-use shift) to GPT-5 (Jerry calls it “03.1-ish”), and talk through verifiers, reward design, and the real trade-offs behind “auto” reasoning modes. We also go inside OpenAI: how research is organized, why collaboration is unusually transparent, and how the company ships fast without losing rigor. Jerry shares the backstory on competitive-programming results like ICPC, what they signal (and what they don’t), and where agents and tool use are genuinely useful today. Finally, we zoom out: could pretraining + RL be the path to AGI? This is the MAD Podcast —AI for the 99%. If you’re curious about how these systems actually work (without needing a PhD), this episode is your map to the current AI frontier. OpenAI Website - https://openai.com X/Twitter - https://x.com/OpenAI Jerry Tworek LinkedIn - / jerry-tworek-b5b9aa56 X/Twitter - https://x.com/millionint FIRSTMARK Website - https://firstmark.com X/Twitter - / firstmarkcap Matt Turck (Managing Director) LinkedIn - / turck X/Twitter - / mattturck LISTEN ON: Spotify - https://open.spotify.com/show/7yLATDS... Apple - https://podcasts.apple.com/us/podcast... 00:00 - Intro 01:01 - What Reasoning Actually Means in AI 02:32 - Chain of Thought: Models Thinking in Words 05:25 - How Models Decide Thinking Time 07:24 - Evolution from O1 to O3 to GPT-5 11:00 - Before OpenAI: Growing up in Poland, Dropping out of School, Trading 20:32 - Working on Robotics and Rubik's Cube Solving 23:02 - A Day in the Life: Talking to Researchers 24:06 - How Research Priorities Are Determined 26:53 - Collaboration vs IP Protection at OpenAI 29:32 - Shipping Fast While Doing Deep Research 31:52 - Using OpenAI's Own Tools Daily 32:43 - Pre-Training Plus RL: The Modern AI Stack 35:10 - Reinforcement Learning 101: Training Dogs 40:17 - The Evolution of Deep Reinforcement Learning 42:09 - When GPT-4 Seemed Underwhelming at First 45:39 - How RLHF Made GPT-4 Actually Useful 48:02 - Unsupervised vs Supervised Learning 49:59 - GRPO and How DeepSeek Accelerated US Research 53:05 - What It Takes to Scale Reinforcement Learning 55:36 - Agentic AI and Long-Horizon Thinking 59:19 - Alignment as an RL Problem 1:01:11 - Winning ICPC World Finals Without Specific Training 1:05:53 - Applying RL Beyond Math and Coding 1:09:15 - The Path from Here to AGI 1:12:23 - Pure RL vs Language Models