У нас вы можете посмотреть бесплатно 4. Feature selection using Correlation Threshold или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to our video on feature selection using correlation threshold! In this tutorial, we'll be exploring a technique for identifying and removing highly correlated features from a dataset. This method can be particularly useful when working with datasets that contain many redundant or highly correlated features. We'll be demonstrating how to apply this technique in Python using pandas and scikit-learn. We'll start by loading and preparing the dataset, then we'll use pandas' .corr() method to calculate the pairwise correlations between features. Next, we'll use scikit-learn's SelectKBest method to select the top performing features based on their correlation score. Finally, we'll evaluate the impact of feature selection on the model's performance. By the end of this video, you'll have a solid understanding of how to use correlation threshold to select relevant features and improve the performance of your machine learning models. #featureselection #correlationthreshold #datapreprocessing #machinelearning #python #pandas #scikitlearn #selectkbest #modelperformance #correlatedfeatures #datacleansing #datawrangling