У нас вы можете посмотреть бесплатно 8. Forward Feature Selection | Wrapper Method | или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to our video on wrapper based feature selection, specifically focusing on forward selection! In this tutorial, we'll be exploring a technique for iteratively selecting features that improve the performance of a machine learning model. This method can be particularly useful when working with datasets that contain many irrelevant or redundant features. We'll be demonstrating how to apply forward selection in Python using scikit-learn. We'll start by loading and preparing the dataset, then we'll define a function for evaluating the performance of a model using cross-validation. Next, we'll implement the forward selection algorithm and use it to select the top performing features. Finally, we'll evaluate the impact of feature selection on the model's performance. By the end of this video, you'll have a solid understanding of how to use wrapper based feature selection with forward selection and be able to confidently apply it in your own machine learning projects. #machinelearning #datascience #statistics #datapreprocessing #datacleansing #featureselection #wrapperbased #forwardselection #machinelearning #python #scikitlearn #modelperformance #crossvalidation #datapreprocessing #datacleansing #datawrangling