У нас вы можете посмотреть бесплатно Student Marks Analysis System Project | Full PPT + Complete Python Code Walkthrough (NumPy + Pandas) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to this full end-to-end walkthrough of the Student Marks Analysis System, a complete Python-based data analysis project built using Pandas and NumPy. In this video, I explain both the PPT presentation (10 slides) and the entire Python script line-by-line, making it perfect for: ✔️ College project submission ✔️ Viva / internal evaluation ✔️ Final year academic presentation ✔️ Python beginners learning data analysis ✔️ Teachers or institutions looking for automated mark analysis 🔍 What You Will Learn in This Video 🎓 PPT Explanation Covered What the project is about Problem definition and objectives Dataset overview Data preprocessing and cleaning Missing value handling Calculations: averages, totals, statistics Class-wise performance analysis Top performers Outlier & at-risk student detection Final results, visualizations, and report summary 💻 Code Walkthrough Covered File handling (CSV/Excel loading) Automatic sample dataset creation Data cleaning (duplicates, NaN imputations, datatype checks) Metrics computation using Pandas & NumPy GroupBy analysis Sorting & filtering for top performers Statistical analysis Visualization using matplotlib Exporting results to the output folder Final summary report 📁 Technologies Used Python Pandas NumPy Matplotlib (optional) 📤 Outputs Generated Automatically Cleaned student marks file Class-wise summary file Top performers file Visual charts (if matplotlib installed) Printed statistical and performance report If you want this code, report files, or explanation script, feel free to comment! Don’t forget to Like, Share & Subscribe for more student-friendly project tutorials ❤️