• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Testing Generative AI Models: What You Need to Know скачать в хорошем качестве

Testing Generative AI Models: What You Need to Know 1 year ago

Databricks

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Testing Generative AI Models: What You Need to Know
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Testing Generative AI Models: What You Need to Know в качестве 4k

У нас вы можете посмотреть бесплатно Testing Generative AI Models: What You Need to Know или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Testing Generative AI Models: What You Need to Know в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Testing Generative AI Models: What You Need to Know

Generative AI shows incredible promise for enterprise applications. The explosion of generative AI can be attributed to the convergence of several factors. Most significant is that the barrier to entry has dropped for AI application developers through customizable prompts (few-shot learning), enabling laypeople to generate high-quality content. The flexibility of models like ChatGPT and DALLE-2 have sparked curiosity and creativity about new applications that they can support. The number of tools will continue to grow in a manner similar to how AWS fueled app development. But excitement must be tampered by concerns about new risks imposed to business and society. Increased capability and adoption also increase risk exposure. As organizations explore creative boundaries of generative models, measures to reduce risk must be put in place. However, the enormous size of the input space and inherent complexity make this task more challenging than traditional ML models. In this session, we summarize the new risks introduced by the new class of generative foundation models through several examples, and compare how these risks relate to the risks of mainstream discriminative models. Steps can be taken to reduce the operational risk, bias and fairness issues, and privacy and security of systems that leverage LLM for automation. We’ll explore model hallucinations, output evaluation, output bias, prompt injection, data leakage, stochasticity, and more. We’ll discuss some of the larger issues common to LLMs and show how to test for them. A comprehensive, test-based approach to generative AI development will help instill model integrity by proactively mitigating failure and the associated business risk. Talk by: Yaron Singer Here’s more to explore: LLM Compact Guide: https://dbricks.co/43WuQyb Big Book of MLOps: https://dbricks.co/3r0Pqiz Connect with us: Website: https://databricks.com Twitter:   / databricks   LinkedIn:   / databricks   Instagram:   / databricksinc   Facebook:   / databricksinc  

Comments
  • Generative AI at Scale Using GAN and Stable Diffusion 1 year ago
    Generative AI at Scale Using GAN and Stable Diffusion
    Опубликовано: 1 year ago
    2676
  • How AI Could Save (Not Destroy) Education | Sal Khan | TED 2 years ago
    How AI Could Save (Not Destroy) Education | Sal Khan | TED
    Опубликовано: 2 years ago
    1834626
  • UML use case diagrams 1 year ago
    UML use case diagrams
    Опубликовано: 1 year ago
    649376
  • Advancements in Open Source LLM Tooling, Including MLflow 1 year ago
    Advancements in Open Source LLM Tooling, Including MLflow
    Опубликовано: 1 year ago
    8163
  • Тестирование Generative AI приложений 10 months ago
    Тестирование Generative AI приложений
    Опубликовано: 10 months ago
    834
  • The Inside Story of ChatGPT’s Astonishing Potential | Greg Brockman | TED 2 years ago
    The Inside Story of ChatGPT’s Astonishing Potential | Greg Brockman | TED
    Опубликовано: 2 years ago
    1832199
  • What is generative AI and how does it work? – The Turing Lectures with Mirella Lapata 1 year ago
    What is generative AI and how does it work? – The Turing Lectures with Mirella Lapata
    Опубликовано: 1 year ago
    1366483
  • Evaluating LLM-based Applications 1 year ago
    Evaluating LLM-based Applications
    Опубликовано: 1 year ago
    35724
  • How “Digital Twins” Could Help Us Predict the Future | Karen Willcox | TED 1 year ago
    How “Digital Twins” Could Help Us Predict the Future | Karen Willcox | TED
    Опубликовано: 1 year ago
    166264
  • ML Integrity - the quest to awaken the true force of AI 2 years ago
    ML Integrity - the quest to awaken the true force of AI
    Опубликовано: 2 years ago
    321

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS