У нас вы можете посмотреть бесплатно IVP Solving: Fourth-Order Taylor Series vs Euler's Method или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Learn how to solve initial value problems (IVPs) for ordinary differential equations (ODEs) using the higher-order Taylor series method. In this tutorial, we focus on the 4th-order Taylor series method, showing how it outperforms Euler’s method by using more derivative terms for better accuracy with the same step size. What you’ll see: A practical derivation of the 4th-order Taylor formula A clear worked example with y’ = y, y(0) = 1 Higher derivatives obtained directly from the ODE Side-by-side comparison with Euler’s method for the same IVP and step size Practical tips for computing higher derivatives using algebra or symbolic tools Key takeaways: Taylor 4th order uses derivatives up to y^(4), improving local truncation error to O(h^4) For smooth problems, Taylor methods often deliver smaller error than Euler at the same h Works for explicit IVPs dy/dx = f(x, y) with manageable derivative calculations Ideal for students studying numerical methods, applied mathematics, or preparing for engineering exams. Links to related content: Taylor and Maclaurin Series: • Unlock the Power of Taylor & Maclaurin Ser... Euler's Method for Solving IVPs: / 9whoazds36y Heun's and Midpoint Methods: • Why Heun's Method LEAVES Euler's Behind in... and • The Midpoint Method Explained: The Step Up... Runge-Kutta Methods Overview: • 5 Minutes to Understanding the POWER of Ru... Adaptive RK (RK45) with Python: • Master the RUNGE KUTTA METHOD with RK45 fo... Subscribe for more clear, step-by-step math tutorials, and let me know which numerical method you want covered next! #ODE #TaylorSeries #NumericalMethods #IVP #MathTutorial