У нас вы можете посмотреть бесплатно ®️ An Adventure in the Realm of Topology | Season 2 | Chapter 3 : Points and Curves или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Can you cross all 7 bridges without walking over any of them twice? 🌉🚫 This simple puzzle stumped the people of Königsberg for centuries. The answer didn't come from walking—it came from a mathematician who dared to throw away the map. In this chapter of "An Adventure in the Realm of Topology," we explore Points and Curves. We witness the birth of Graph Theory through the genius of Leonhard Euler and discover how simplifying a problem can reveal deep truths about connectivity. But we don't stop there—we also twist reality (literally) with the Möbius Strip, a shape with only one side! 🎓 In this lesson, you will discover: Rubber Sheet Geometry: Why Topology doesn't care about straight lines or perfect angles. The 7 Bridges Problem: How Euler turned a city into "Vertices" and "Edges." Graph Theory 101: The mathematical proof behind why some paths are impossible. The Möbius Strip: A mind-bending surface where "up" becomes "down" without crossing an edge. Time Travel?!: How one-sided surfaces might solve the Grandfather Paradox. 🧠 Key Takeaways: We learn that sometimes, the exact shape of an object matters less than how it is connected. This concept is the foundation of everything from subway maps to social networks. 🔗 Resources & References: Based on the book: An Adventure in the Realm of Topology Full Playlist: [Link to Playlist] 📢 Join the Adventure: Have you ever made a Möbius strip at home? It's easier than you think! Let us know in the comments. Subscribe to keep exploring the strange shapes of our universe. #GraphTheory #Topology #Euler #MobiusStrip #MathHistory #Geometry #Staiblocks #Mathematics #Engineering