У нас вы можете посмотреть бесплатно ®️ Dynamic Topology | Session 8: Topological Limits или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
We know how points move towards a limit, but what happens when the "moving object" is an entire set or shape? How do we define convergence for a sequence of sets that might be stretching, shrinking, or wobbling? In this session (Session 8), we tackle Section VIII of Gordon Whyburn's Dynamic Topology. We introduce the definitive tools for tracking moving sets: Topological Limits. Think of this concept as a special camera with two distinct lenses: The "Recurring" Lens (Limit Superior - Ls): Captures every point the sets visit infinitely often. The "Persistent" Lens (Limit Inferior - Li): Captures only the points where the sets eventually settle and stay. When these two views align (Ls = Li), we witness the magic of Topological Convergence. This framework is the heartbeat of Dynamic Topology, allowing us to study stability and change in mathematical systems. 📘 In this lesson, you will learn: Limit Superior (Ls): The set of accumulation points (The "Recurring View"). Limit Inferior (Li): The set of persistent points (The "Persistent View"). Convergence Criteria: When does a sequence of sets actually have a limit? Visual Intuition: Using the "Camera Metaphor" to understand abstract definitions. 📚 Course Resources: Textbook: Dynamic Topology by Gordon Whyburn & Edwin Duda (Section VIII). Previous Session: [Link to Session 7: Diameters and Distances] Full Playlist: [Link to Playlist] 🧠 Key Concepts: #DynamicTopology #SetTheory #TopologicalLimits #LimitSuperior #LimitInferior #Mathematics #Convergence 🔔 Next Up: Now that we can define how sets converge, the next big question is about stability: If a sequence of connected sets converges, is the limit also connected? Subscribe and hit the bell so you don't miss our deep dive into the Connectedness of Limit Sets. 👇 Discussion: Does the "Camera Metaphor" help you visualize Ls and Li? Which "lens" do you find easier to calculate in practice? Let me know in the comments!