У нас вы можете посмотреть бесплатно Advances in Parallel and Private Stochastic Optimization from Ball Acceleration - Kevin Tian или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Computer Science/Discrete Mathematics Seminar I Topic: Advances in Parallel and Private Stochastic Optimization from Ball Acceleration Speaker: Kevin Tian Affiliation: The University of Texas at Austin Date: February 12, 2024 Consider an oracle which takes a point x and returns the minimizer of a convex function f in an ℓ2 ball of radius r around x. While it is straightforward to show that ≈r−1 queries to this oracle suffice to minimize f to high accuracy in a unit ball, perhaps surprisingly, we established recently that r−2/3 queries is the tight rate up to logarithmic factors. The resulting framework, also known as ball acceleration, has advanced the state-of-the-art for a host of fundamental optimization problems exhibiting local stability. I will provide an overview of the ball acceleration framework, its approximation-tolerant implementation, and its applications, with an emphasis on parallel and private variants of stochastic convex optimization and outstanding open directions.