У нас вы можете посмотреть бесплатно Measure Zero Sets (Riemann Integration), Real Analysis II или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this lecture, we make the transition from volume to measure theory, beginning with the concept of measure zero sets. We revisit what it meant, in the earlier framework, for a set to have volume zero, and then explain how measure provides a more flexible and powerful foundation. This shift also clarifies when a function is Riemann integrable over a bounded region in Rn. In our previous discussion (here • Volume in Rn with the Characteristic Funct... ), we defined the volume of a bounded subset of Euclidean space by integrating its characteristic function, provided that function was Riemann integrable. This gave us a working definition of volume but came with limitations, notably the lack of additivity. After establishing the definition, we prove that the (unbounded) set of rational numbers Q has measure 0. This example illustrates the contrast between volume and measure and prepares us for this fundamental result: Any countable union of measure zero sets has measure zero. These results give us stronger additivity properties than volume could provide and build toward Lebesgue’s theorem. #mathematics #realanalysis #riemannintegration #advancedcalculus #measuretheory #integrability #lebesgue #advancedmaths #LebesgueIntegration #maths