• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Gaussian Processes скачать в хорошем качестве

Gaussian Processes 3 years ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Gaussian Processes
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Gaussian Processes в качестве 4k

У нас вы можете посмотреть бесплатно Gaussian Processes или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Gaussian Processes в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Gaussian Processes

The machine learning consultancy: https://truetheta.io Join my email list to get educational and useful articles (and nothing else!): https://mailchi.mp/truetheta/true-the... Want to work together? See here: https://truetheta.io/about/#want-to-w... For Machine Learning, Gaussian Processes enable flexible models with the richest output you could ask for - an entire predictive distribution (rather than a single number). In this video, I break down what they are, how they work and how to model with them. My intention is this will help you join the large group of people successfully applying GPs to real world problems. SOCIAL MEDIA LinkedIn :   / dj-rich-90b91753   Twitter :   / duanejrich   Enjoy learning this way? Want me to make more videos? Consider supporting me on Patreon:   / mutualinformation   SOURCES Chapter 17 from [2] is the most significance reference for this video. That's where I discovered the Bayesian Linear Regression to GP generalization, the list of valid ways to adjust a kernel and the Empirical Bayes approach to hyperparameter optimization. Also, it's where I get most of the notation. (In fact, for all my videos, Kevin Murphy's notation is what I follow most closely.) [1] is a very thorough practical and theoretical analysis of GPs. When I first modeled with GPs, this book was a frequent reference. It offers a lot of practical advice for designing kernels, hyperparameter optimization and interpreting results. [5] offers a useful tutorial on how to design kernels. I attribute this source for my intuitive understanding of how to combine kernels. Neil's talks ([4]) on GPs were also influential. They've helped me develop much of my intuition on how GPs work. [3] is an beautiful tutorial on GPs. I'd recommend it to anyone learning about GPs for the first time. --------------------------- [1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT Press, 2006. [2] K. P. Murphy. Probabilistic Machine Learning (Second Edition), MIT Press, 2021 [3] J. Görtler, et al., "A Visual Exploration of Gaussian Processes", Distill, 2019. https://distill.pub/2019/visual-explo... [4] N. Lawrence, Gaussian Processes talks on MLSS Africa,    • Neil Lawrence - Gaussian Processes Pa...  ,    • Neil Lawrence Gaussian Processes Part 2   [5] D. K. Duvenaud, The Kernel Cookbook: Advice on Covariance Functions, University of Cambridge, https://www.cs.toronto.edu/~duvenaud/... [6] K. Weinberger, "Gaussian Processes", Cornell University,    • Machine Learning Lecture 26 "Gaussian...   and    • Machine Learning Lecture 27 "Gaussian...   RESOURCES GPyTorch provides an extensive suite of PyTorch based tools for GP modeling. They have efficient handling of tensors, fast variance calculations, multi-task learning tools, integrations with Pyro, and Deep Kernel Learning, among other things. Exploring this as a toolset is a great way to become a competent GP modeler. Link : https://gpytorch.ai/ Also, I'd recommend source [5] for getting familiar with how to model with GPs. Understanding the kernel space to function space relationship takes time, but it takes less with this guide. Also, it links to Duvenaud's PhD Thesis, which is a very deep dive on the subject (though don't ask me about it - I didn't read it!). EXTRA Why is it OK to act as though a sample from a multiplied kernel comes from multiplying the function samples from the two component kernels? The problem comes from the fact that if x1 is a sample from a Multivariate Normal with mean zero and covariance matrix S1 and the same is true for x2 and S2, then the element-wise product x1*x2 is not distributed as a multivariate Normal. However, whatever distribution x1*x2 has, it still has a covariance of S1*S2 (I've verified this experimentally). That means it wiggles similarly to a sample from the product kernel. The background here is, I accidentally thought it was true for quite a while and it was helpful for modeling. I certainly could never tell it wasn't true. When creating this video, I discovered it wasn't in fact true, but merely a useful approximation. Wallpaper: https://github.com/Duane321/mutual_in... Timestamps 0:00 Pros of GPs 1:06 Bayesian Linear Regression to GPs 3:52 Controlling the GP 7:31 Modeling by Combining Kernels 8:52 Modeling Example 11:55 The Math behind GPs 18:42 Hyperparameter Selection 21:58 Cons of GPs 22:58 Resourcing for Learning More

Comments
  • ML Tutorial: Gaussian Processes (Richard Turner) 7 years ago
    ML Tutorial: Gaussian Processes (Richard Turner)
    Опубликовано: 7 years ago
    146785
  • The Fisher Information 4 years ago
    The Fisher Information
    Опубликовано: 4 years ago
    88078
  • Function Approximation | Reinforcement Learning Part 5 2 years ago
    Function Approximation | Reinforcement Learning Part 5
    Опубликовано: 2 years ago
    29146
  • Bayes theorem, the geometry of changing beliefs 5 years ago
    Bayes theorem, the geometry of changing beliefs
    Опубликовано: 5 years ago
    5005441
  • Why Does Diffusion Work Better than Auto-Regression? 1 year ago
    Why Does Diffusion Work Better than Auto-Regression?
    Опубликовано: 1 year ago
    578759
  • 31. Gaussian Processes 9 months ago
    31. Gaussian Processes
    Опубликовано: 9 months ago
    2466
  • Factor Analysis and Probabilistic PCA 3 years ago
    Factor Analysis and Probabilistic PCA
    Опубликовано: 3 years ago
    24424
  • Bayesian Optimization 1 month ago
    Bayesian Optimization
    Опубликовано: 1 month ago
    14718
  • Gaussian Processes : Data Science Concepts 10 months ago
    Gaussian Processes : Data Science Concepts
    Опубликовано: 10 months ago
    25188
  • The Key Equation Behind Probability 8 months ago
    The Key Equation Behind Probability
    Опубликовано: 8 months ago
    243962

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS