У нас вы можете посмотреть бесплатно The Three-Body Problem: Introduction and Simulation или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
An introduction to the three-body problem with an explanation of the math and physics using a simulation written in python. Includes examples of stable solutions. Music from #Uppbeat (free for Creators!): https://uppbeat.io/t/revo/universal License code: H8LISAQDTUVM057L Thanks to Dr. Rhett Allain for the introduction to VPython and Trinket.io and his video on the 3-body problem here: • What is the Three Body Problem and How Do ... I should also acknowledge Alain Chenciner and Richard Montgomery for their work in the discovery and analysis of the figure 8 solution (links below) The figure-8 trinket: https://trinket.io/glowscript/b541844f22 Initial conditions for figure 8 in python: (with G=1) Ax=.97000436, Ay=-.24308753 Bx=-97000436, By=0.24308753 Cx=0, Cy=0 A velocity = (.93240737/2,.86473/2) B velocity = (.93240737/2,.86473/2) C velocity = (-.93240737,-.86473146) Initial conditions for the "rose petal window" in python: (with G=1) mass values: A(mass)=.44, B(mass)=.87, C(mass)=1 Ax=-1.2, Ay=0 Bx=1, By=0 Cx=0, Cy=0 A velocity = (0,-.992852) B velocity = (0,-.513024) C velocity = (0,.882922) Initial conditions for figure 8 in Universe Sandbox:.. m1=m2=m3=1.00 sun pos1=(5e10 m,0,0) pos2=(-5e10 m,0,0) pos3=(0,0,0) v1=v2=(p1,p2,0) v3=(-2*p1,-2*p2,0) p1=17884.34 m/s p2=27447.95 m/s These videos I've done recently cover more on the 3-body problem: • Solving the 3-body Problem with Runge-Kutt... • The 3-Body Problem: An Introduction by Ale... More on the mathematics of the 3 body problem here: https://www.scientificamerican.com/ar... https://observablehq.com/@rreusser/pe... https://arxiv.org/abs/math/0011268 https://adsabs.harvard.edu/full/1974C...