У нас вы можете посмотреть бесплатно A Flying Ring - Outdoor Experiments или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
The vehicle combines the advantages of a quadrotor (mechanically simple, robust hover capability, vertical takeoff and land, etc.) and a fixed wing vehicle (efficient high speed forward flight). The annular wing provides lift, enshrouds the propeller blades for safety, and can lead to noise reduction. The vehicle is autonomous. See [1] regarding manufacturing, [2,3] for modelling, [4,5] for state estimation, and [6] for the control algorithm. Specific power: Vehicle with flat plate (white) airfoil (mass = 0.717 kg): 116 W/kg at hover, 139 W/kg at 10 m/s Vehicle with e169-il (blue) airfoil (mass = 0.75 kg): 116 W/kg at hover, 100 W/kg at 10 m/s FMA Quadrotor (mass = 0.5 kg) [2,7] : 180 W/kg at hover, 300 W/kg at 10 m/s Previous "A Flying Ring" video: • A Flying Ring . Researchers: Rajan Gill and Raffaello D'Andrea Institute for Dynamic Systems and Control (IDSC), ETH Zurich, Switzerland - https://idsc.ethz.ch, https://www.flyingmachinearena.ethz.c.... Acknowledgments The e169-il airfoil was manufactured in collaboration with the Product Development Group Zurich (PDZ), ETH Zurich - https://pdz.ethz.ch. The researchers would like to thank the Institute of Fluid Dynamics (IFD), ETH Zurich - https://ifd.ethz.ch - for access to the large subsonic wind tunnel. This work is supported by and builds upon prior contributions by numerous collaborators in the Flying Machine Arena (FMA) project. See http://www.flyingmachinearena.org/people. This research was funded in part by the National Research Council of Canada (NSERC) and the Swiss National Science Foundation (SNSF). References [1] Türk, D. A., Fontana, F., Rüegg, F., Gill, R. J., & Meboldt, M. (2017). Assessing the performance of additive manufacturing applications. In DS 87-5 Proceedings of the 21st International Conference on Engineering Design (ICED 17) (pp. 259-268). [2] Gill, R., & D'Andrea, R. (2017). Propeller thrust and drag in forward flight. In 2017 IEEE Conference on Control Technology and Applications (CCTA) (pp. 73-79). [3] Gill, R., & D’Andrea, R. (2019). Computationally Efficient Force and Moment Models for Propellers in UAV Forward Flight Applications. Drones, 3(4), 77. doi:10.3390/drones3040077 [4] Gill, R., Mueller, M., & D'Andrea, R. (2020). A Full-order Solution to the Attitude Reset Problem for Kalman Filtering of Attitudes. Journal of Guidance, Control, and Dynamics (In Press). [5] Gill, R., & D'Andrea, R. (In preparation). [6] Gill, R., & D'Andrea, R. (2020). An Annular Wing VTOL UAV: Flight Dynamics and Control . Drones, 3(4). doi:10.3390/drones4020014 [7] Lupashin, S., Hehn, M., Mueller, M. W., Schoellig, A. P., Sherback, M., & D’Andrea, R. (2014). A platform for aerial robotics research and demonstration: The flying machine arena. Mechatronics, 24(1), 41-54.