• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer скачать в хорошем качестве

Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer 1 year ago

deep learning

pytorch

ai

ml

machine learning

paper review

large language model

mistral

mistral ai

mistral 7b

mistral 8x7b

pipeline parallelism

kv-cache

kv cache

sparse mixture of experts

mixture of experts

moe

smoe

sliding window attention

model sharding

prefill

chunking

xformers

BlockDiagonalCausalMask

BlockDiagonalMask

BlockDiagonalCausalWithOffsetPaddedKeysMask

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer в качестве 4k

У нас вы можете посмотреть бесплатно Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



Mistral / Mixtral Explained: Sliding Window Attention, Sparse Mixture of Experts, Rolling Buffer

In this video I will be introducing all the innovations in the Mistral 7B and Mixtral 8x7B model: Sliding Window Attention, KV-Cache with Rolling Buffer, Pre-Fill and Chunking, Sparse Mixture of Experts (SMoE); I will also guide you in understanding the most difficult part of the code: Model Sharding and the use of xformers library to compute the attention for multiple prompts packed into a single sequence. In particular I will show the attention computed using BlockDiagonalCausalMask, BlockDiagonalMask and BlockDiagonalCausalWithOffsetPaddedKeysMask. I will also show you why the Sliding Window Attention allows a token to "attend" other tokens outside the attention window by linking it with the concept of Receptive Field, typical of Convolutional Neural Networks (CNNs). Of course I will prove it mathematically. When introducing Model Sharding, I will also talk about Pipeline Parallelism, because in the official mistral repository they refer to microbatching. I release a copy of the Mistral code commented and annotated by me (especially the most difficult parts): https://github.com/hkproj/mistral-src... Slides PDF and Python Notebooks: https://github.com/hkproj/mistral-llm... Prerequisite for watching this video:    • Attention is all you need (Transformer) - ...   Other material for better understanding Mistral: Grouped Query Attention, Rotary Positional Encodings, RMS Normalization:    • LLaMA explained: KV-Cache, Rotary Position...   Gradient Accumulation:    • Distributed Training with PyTorch: complet...   Chapters 00:00:00 - Introduction 00:02:09 - Transformer vs Mistral 00:05:35 - Mistral 7B vs Mistral 8x7B 00:08:25 - Sliding Window Attention 00:33:44 - KV-Cache with Rolling Buffer Cache 00:49:27 - Pre-Fill and Chunking 00:57:00 - Sparse Mixture of Experts (SMoE) 01:04:22 - Model Sharding 01:06:14 - Pipeline Parallelism 01:11:11 - xformers (block attention) 01:24:07 - Conclusion

Comments
  • LLaMA explained: KV-Cache, Rotary Positional Embedding, RMS Norm, Grouped Query Attention, SwiGLU 1 year ago
    LLaMA explained: KV-Cache, Rotary Positional Embedding, RMS Norm, Grouped Query Attention, SwiGLU
    Опубликовано: 1 year ago
    95768
  • Flash Attention derived and coded from first principles with Triton (Python) 7 months ago
    Flash Attention derived and coded from first principles with Triton (Python)
    Опубликовано: 7 months ago
    48861
  • Variational Autoencoder - Model, ELBO, loss function and maths explained easily! 2 years ago
    Variational Autoencoder - Model, ELBO, loss function and maths explained easily!
    Опубликовано: 2 years ago
    51046
  • Mistral 8x7B Part 1- So What is a Mixture of Experts Model? 1 year ago
    Mistral 8x7B Part 1- So What is a Mixture of Experts Model?
    Опубликовано: 1 year ago
    44991
  • Master AI Agents & AutoGen in Python with 6 Step-by-Step Projects (2025 Beginner-Friendly) 2 weeks ago
    Master AI Agents & AutoGen in Python with 6 Step-by-Step Projects (2025 Beginner-Friendly)
    Опубликовано: 2 weeks ago
    2435
  • A Visual Guide to Mixture of Experts (MoE) in LLMs 6 months ago
    A Visual Guide to Mixture of Experts (MoE) in LLMs
    Опубликовано: 6 months ago
    26298
  • Quantization explained with PyTorch - Post-Training Quantization, Quantization-Aware Training 1 year ago
    Quantization explained with PyTorch - Post-Training Quantization, Quantization-Aware Training
    Опубликовано: 1 year ago
    36773
  • Deep Dive into LLMs like ChatGPT 4 months ago
    Deep Dive into LLMs like ChatGPT
    Опубликовано: 4 months ago
    2704868
  • Rotary Positional Embeddings: Combining Absolute and Relative 1 year ago
    Rotary Positional Embeddings: Combining Absolute and Relative
    Опубликовано: 1 year ago
    53795
  • LoRA: Low-Rank Adaptation of Large Language Models - Explained visually + PyTorch code from scratch 1 year ago
    LoRA: Low-Rank Adaptation of Large Language Models - Explained visually + PyTorch code from scratch
    Опубликовано: 1 year ago
    39655

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5