У нас вы можете посмотреть бесплатно 🍪 CFD cookie 2 - Visiting all RANS models in OpenFOAM - K-Epsilon Lien-Leschziner - Part 20 или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
👉 Turbulence models in OpenFOAM | Theory and numerical pointers 🫡 RANS simulation using the LRN K-Epsilon Lien-Leschziner Turbulence model 😋 Zero Pressure Gradient Flat Plate – Re = 10 000 000 👌 00:00 Introduction 01:28 Review of all turbulence models we have studied so far 05:05 Lien-Leschziner Turbulence model - Litereature review 13:58 The Lien-Leschziner Turbulence model in OpenFOAM - Revisiting wall functions in OpenFOAM 18:33 Case setup in OpenFOAM - The Lien-Leschziner Turbulence model 29:58 The Lien-Leschziner Turbulence model in OpenFOAM - Epsilon or epsilon modified? 33:15 Final remarks This CFD cookie 🍪 is based on OpenFOAM 12, but the general guidelines and standard practices should work with any OpenFOAM version. 🤔 We also address the following question (CFD cookie 1): Without reference results (experimental, analytical, etc.), how do I know that my turbulent Multiphysics simulations are correct? You can find CFD cookie 1 at the following link: 👈 • 🍪 CFD cookie - Basic turbulence modeling w... 🤪 This cookie has been approved by the 🍪 cookie monster 👹. Training material repository https://drive.google.com/drive/folder... Useful links: https://turbmodels.larc.nasa.gov/ https://www.wolfdynamics.com/tools.ht... Useful references: B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering. 1974. B. E. Launder, B. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, Vol. 1(2), pp. 131-138. 1974. W. Jones, B. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 15, pp. 301–314, 1972. W. Jones, B. Launder. The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. Int. J. Heat Mass Transfer, vol. 16, pp. 1119–1130, 1973. C. Lam, K. Bremhorst. Modified Form of k-epsilon Model for Predicting Wall Turbulence. ASME, Journal of Fluids Engineering, Vol. 103, pp. 456-460, 1981. D. Apsley. https://personalpages.manchester.ac.u.... Turbulence modelling in the STREAM code, 2002. D. Apsley. https://personalpages.manchester.ac.u.... PhD Thesis V. Patel, W. Rodi, G. Scheuerer. Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review. AIAA Journal VOL. 23, NO. 9. 1984. F. Lien, M. Leschziner. A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure. Journal of fluids engineering, 115(4), 717-725. (1993). ********************************************************************************** Wolʇ Dynamics, your reliable partner for CAE solutions, CAD and solid modeling → Meshing → Simulations → Automation and optimization → Post-processing → Data analytics and ML → Reporting http://www.wolfdynamics.com/ Why Wolʇ Dynamics? Simply look at our banner - notice how the F appears backwards. Wolʇ Dynamics ↔ Flow Dynamics 😯+💣=🤯 **************************************************************************** 👉 Subscribe and hit the bell to see new videos or we will go back to OpenFOAM 3: / @wolfdynamicscfd 🖖 Join our channel to help us create more content. By joining our channel, you can also get access to perks: / @wolfdynamicscfd Follow us: Twitter → twitter.com/WolfDynamics LinkedIn → linkedin.com/company/wolf-dynamics **************************************************************************** Wolf Dynamics makes no warranty, express or implied, about the completeness, accuracy, reliability, suitability, or usefulness of the information disclosed in this training material. This training material is intended to provide general information only. Any reliance the final user place on this training material is therefore strictly at his/her own risk. Under no circumstances and under no legal theory shall Wolf Dynamics be liable for any loss, damage or injury, arising directly or indirectly from the use or misuse of the information contained in this training material. **************************************************************************** #cfd #cae #turbulence #openfoam #computationalfluiddynamics #aerospace #RANS