У нас вы можете посмотреть бесплатно BERT-QE: Contextualized Query Expansion for Document Re-ranking (Research Paper Walkthrough) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
#bert #informationretrieval #nlp Query expansion ( QE) is the process of reformulating a given query to improve retrieval performance in information retrieval operations, particularly in the context of query understanding. This paper introduces BERT to find relevant chunks from the documents as possible augmentations to the given query. ✔️ Automatic Python code generation from Spreadsheet - Mito - https://bit.ly/3eo4Wwi ⏩ Abstract: Query expansion aims to mitigate the mismatch between the language used in a query and in a document. However, query expansion methods can suffer from introducing non-relevant information when expanding the query. To bridge this gap, inspired by recent advances in applying contextualized models like BERT to the document retrieval task, this paper proposes a novel query expansion model that leverages the strength of the BERT model to select relevant document chunks for expansion. In evaluation on the standard TREC Robust04 and GOV2 test collections, the proposed BERT-QE model significantly outperforms BERT-Large models. Please feel free to share out the content and subscribe to my channel :) ⏩ Subscribe - / @techvizthedatascienceguy ⏩ OUTLINE: 0:00 - Background and Abstract 1:35 - Method Overview 2:30 - Step 1 in BERT-QE 4:32 - Step 2 in BERT-QE 6:40 - Step 3 in BERT-QE 8:15 - Entire Pipeline Summary ⏩ Paper Title: BERT-QE: Contextualized Query Expansion for Document Re-ranking ⏩ Paper: https://arxiv.org/pdf/2009.07258.pdf ⏩ Code: https://github.com/zh-zheng/BERT-QE ⏩ Author: Zhi Zheng, Kai Hui, Ben He, Xianpei Han, Le Sun, Andrew Yates ⏩ Organisation: University of Chinese Academy of Sciences, Amazon Alexa, Institute of Software, Chinese Academy of Sciences, Max Planck Institute for Informatics ⏩ IMPORTANT LINKS Full Playlist on BERT usecases in NLP: • Text Summarization of COVID-19 Medical Art... Full Playlist on Text Data Augmentation Techniques: • Data Augmentation using Pre-trained Transf... Full Playlist on Text Summarization: • Text Summarization of COVID-19 Medical Art... Full Playlist on Machine Learning with Graphs: • DEEPWALK: Online Learning of Social Repres... Full Playlist on Evaluating NLG Systems: • Evaluation of Text Generation: A Survey | ... ********************************************* If you want to support me financially which totally optional and voluntary :) ❤️ You can consider buying me chai ( because i don't drink coffee :) ) at https://www.buymeacoffee.com/TechvizC... ********************************************* ⏩ Youtube - / techvizthedatascienceguy ⏩ Blog - https://prakhartechviz.blogspot.com ⏩ LinkedIn - / prakhar21 ⏩ Medium - / prakhar.mishra ⏩ GitHub - https://github.com/prakhar21 ⏩ Twitter - / rattller ********************************************* Please feel free to share out the content and subscribe to my channel :) ⏩ Subscribe - / @techvizthedatascienceguy Tools I use for making videos :) ⏩ iPad - https://tinyurl.com/y39p6pwc ⏩ Apple Pencil - https://tinyurl.com/y5rk8txn ⏩ GoodNotes - https://tinyurl.com/y627cfsa #techviz #datascienceguy #ai #researchpaper #naturallanguageprocessing #ranking #ir