• ClipSaver
  • dtub.ru
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass) скачать в хорошем качестве

PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass) 1 год назад

скачать видео

скачать mp3

скачать mp4

поделиться

телефон с камерой

телефон с видео

бесплатно

загрузить,

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass) в качестве 4k

У нас вы можете посмотреть бесплатно PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



PETR'S MIRACLE: Why was it lost for 100 years? (Mathologer Masterclass)

Today’s topic is the Petr-Douglas-Neumann theorem. John Harnad told me about this amazing result a couple of weeks ago and I pretty much decided on the spot that this would be the next Mathologer video. I really had a lot of fun bringing this one to life, maybe too much fun :) Very good Wiki page on the Petr–Douglas–Neumann theorem https://en.wikipedia.org/wiki/Petr-Do... Napoleon's theorem and the PDN theorem at Cut-the-knot https://www.cut-the-knot.org/ctk/Napo... Petr's original paper https://dml.cz/handle/10338.dmlcz/120936 Worth a look for eigenpolygon decomposition and other application within geometry, etc. https://forumgeom.fau.edu/FG2015volum... https://forumgeom.fau.edu/FG2009volum... https://www.researchgate.net/publicat... A fantastic app that does the eigenpolygon decomposition contributed by Steven De Keninck from the Computer Vision Group at the University of Amsterdam https://enki.ws/ganja.js/examples/cof... Check out Branko Grünbaum notes on "Modern Elementary Geometry" https://tinyurl.com/5av8jwnk and G.C Shephard's "Sequences of smoothed polygons" (paywalled) for how all this fits in the grand scheme of things. John Harnad's YouTube video on a complete proof of the Petr-Douglas-Neuman theorem.    • The Petr-Douglas-Neumann theorem  (PDN The...   Here is John's (slightly updated) write-up that goes with his video http://www.qedcat.com/PDN_theorem_ext... If you like this Mathologer video thank John, he lobbied for it :) John's website: http://www.crm.umontreal.ca/~harnad/ I put a couple of Geogebra Geometry and Mathematica apps that made for this video in this folder http://www.qedcat.com/petr/ Here is Geogebra Geometry online https://www.geogebra.org/geometry?lan... (you can also download a standalone version for free) Nice geogebra classic animation by Ron Vanden Burg https://www.geogebra.org/classic/sdft... He chooses a different but equivalent approach to Petr, Douglas and Neumann. He attaches regular n-gons instead of the ears. Instead of connecting the tips of the ears, he connects the centers of the added regular n-gons. And instead of using ears with different angles each round, he adds the regular n-gons where each round has a different distribution of vertices that get to each side of the edge. It has a slider to switch from triangle (n=3) to decagons (n=10) and there is a play button to run through the different stages. Here is an updated version https://www.geogebra.org/classic/ztvr... Another really nice app by Christian Baune https://www.programaths.com/petr/ Andrew put together the following quick “howto” for tools in geogebra - a tool is a sequence of construction steps that you can reuse (can speed up constructions tremendously) .    • geogebra tools   The file he is working on in his video is here https://www.geogebra.org/classic/zrzq... A YouTube video animating some instances of PDN    • PDN Teoremi Petr Douglas Neumann   Eigenpolygon Decomposition of Polygons the Microsoft technical report by Pixar founder Alvy Ray Smith http://alvyray.com/Memos/CG/Microsoft... Alvy Ray's website http://alvyray.com Nice applications: In electrical engineering: https://en.m.wikipedia.org/wiki/Symme... Check out the paragraph entitled "Intuition" for an explicit reference to Napoleons theorem. Being able to find the center of mass of a polygon is another nice application in itself. Nice remarks: For a digon we are attaching 2-2=0 360/2-gons to arrive at ... the same digon ... which is automatically regular :) Adding a 180-degree ear to a segment is the same as bisecting this segment. So the tip of the ear ends up in the middle of the segment. Visualisation challenges: I sort of had it going in Mathematica just for 10-gons. An app that allows you to pick the vertices of a closed polygon on a canvas and then calculates the intermediate polygons. One problem with the intermediate polygons is that for acute angles the displacement is large and so that can quickly lead to the intermediate polygons growing too large for your canvas. Some rescaling is probably the way to go. Alternatively, since the end result is always the same no matter the order, it makes sense to apply angles in complementing pairs, jump out and in, and only show every second stage of the evolution. Maybe some app that allows to input a smooth curve and then allows to experiment with different polygon approximations to see whether we get some convergence. The decomposition into the special types is a great one to animate. If you’ve got Mathematica I’ve included what I got up to in the file directory I link to above. Music: A tender heart by the David Roy Collective and Trickster by Ian Post (two slightly different versions) T-shirt: Rock Paper Scissors Lizard Spock t-shirt (google it, lots of different versions) Enjoy! Burkard

Comments
  • The ARCTIC CIRCLE THEOREM or Why do physicists play dominoes? 4 года назад
    The ARCTIC CIRCLE THEOREM or Why do physicists play dominoes?
    Опубликовано: 4 года назад
  • Что это доказывает? Одно из самых блестящих «сжимающих» наглядных доказательств 5 лет назад
    Что это доказывает? Одно из самых блестящих «сжимающих» наглядных доказательств
    Опубликовано: 5 лет назад
  • Are Electrons made of Light? (The Williamson & Van der Mark Electron model). 3 дня назад
    Are Electrons made of Light? (The Williamson & Van der Mark Electron model).
    Опубликовано: 3 дня назад
  • Way beyond the golden ratio: The power of AB=A+B (Mathologer masterclass) 1 год назад
    Way beyond the golden ratio: The power of AB=A+B (Mathologer masterclass)
    Опубликовано: 1 год назад
  • Аксиома выбора: как Георг Кантор чуть не сломал математику [Veritasium] 5 месяцев назад
    Аксиома выбора: как Георг Кантор чуть не сломал математику [Veritasium]
    Опубликовано: 5 месяцев назад
  • The mathematically impossible ball that shouldn’t exist. 1 год назад
    The mathematically impossible ball that shouldn’t exist.
    Опубликовано: 1 год назад
  • How One Line in the Oldest Math Text Hinted at Hidden Universes 2 года назад
    How One Line in the Oldest Math Text Hinted at Hidden Universes
    Опубликовано: 2 года назад
  • Researchers thought this was a bug (Borwein integrals) 3 года назад
    Researchers thought this was a bug (Borwein integrals)
    Опубликовано: 3 года назад
  • The Moessner Miracle. Why wasn't this discovered for over 2000 years? 4 года назад
    The Moessner Miracle. Why wasn't this discovered for over 2000 years?
    Опубликовано: 4 года назад
  • It Took 2137 Years to Solve This 1 год назад
    It Took 2137 Years to Solve This
    Опубликовано: 1 год назад
  • Conway's IRIS and the windscreen wiper theorem 1 год назад
    Conway's IRIS and the windscreen wiper theorem
    Опубликовано: 1 год назад
  • Absolute Infinity - Numberphile 1 год назад
    Absolute Infinity - Numberphile
    Опубликовано: 1 год назад
  • The hardest 5 лет назад
    The hardest "What comes next?" (Euler's pentagonal formula)
    Опубликовано: 5 лет назад
  • Самый простой монстр Рамануджана Hard Infinity (Мастер-класс Mathologer) 2 года назад
    Самый простой монстр Рамануджана Hard Infinity (Мастер-класс Mathologer)
    Опубликовано: 2 года назад
  • Pythagoras twisted squares: Why did they not teach you any of this in school? 3 года назад
    Pythagoras twisted squares: Why did they not teach you any of this in school?
    Опубликовано: 3 года назад
  • How do you prove a prime is infinitely fragile? 4 года назад
    How do you prove a prime is infinitely fragile?
    Опубликовано: 4 года назад
  • Why are Most Polygons Impossible to Construct? 1 год назад
    Why are Most Polygons Impossible to Construct?
    Опубликовано: 1 год назад
  • The Invention That Saved Science 5 месяцев назад
    The Invention That Saved Science
    Опубликовано: 5 месяцев назад
  • The Simple Math Problem Nobody Could Solve 3 месяца назад
    The Simple Math Problem Nobody Could Solve
    Опубликовано: 3 месяца назад
  • Это парадокс? (лучший способ разрешения парадокса художника) 2 года назад
    Это парадокс? (лучший способ разрешения парадокса художника)
    Опубликовано: 2 года назад

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5