У нас вы можете посмотреть бесплатно Theorems in Graph Theory | Handshaking Theorem | Other Important Theorems или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Theorems in Graph Theory | Handshaking Theorem | Other Important Theorems In This Video we will discuss 1. Handshaking Theorem - The sum of degrees of all vertices in a graph G is equal to twice the number of edges in G. 2. Prove that in a graph the number of vertices of odd degree is even. 3. Prove that the maximum degree of any vertex in a simple graph having n vertices in n-1 4. Show that the maximum number of edges in a simple graph with n vertices is n(n-1)/2 5. Prove that the number of edges in a complete graph with n vertices is n(n-1)/2 This video is helpful for b.sc, bca, bba & Engineering mathematics. Graph theory full playlist link • Graph Theory discrete mathematics Discrete Mathematics full playlist • Analysis of Algorithm Like the video Share with your friends and Subscribe #graphtheroy #discretemathematics #bsc #btech #bca 0:00 Handshaking Theorem - The sum of degrees of all vertices in a graph G is equal to twice the number of edges in G. 3:45 Prove that in a graph the number of vertices of odd degree is even. 7:37 Prove that the maximum degree of any vertex in a simple graph having n vertices in n-1 9:23 Show that the maximum number of edges in a simple graph with n vertices is n(n-1)/2 11:44 Prove that the number of edges in a complete graph with n vertices is n(n-1)/2