У нас вы можете посмотреть бесплатно Support Vector Regression Explained: How to Predict Continuous Values with SVMs или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Support Vector Regression (SVR) is one of the most powerful yet underrated machine learning algorithms—and in this video, we break it down step by step in a beginner-friendly way. In this video, you’ll learn: What Support Vector Regression (SVR) actually is How SVR is different from Linear Regression Why SVR performs better when your dataset has outliers The role of the epsilon (ε) tube in SVR How changing epsilon impacts model behavior and error tolerance A clear visual comparison between Linear Regression and SVR We start by creating a dataset and visually identifying outliers, then compare how Linear Regression and SVR react to those outliers. You’ll see how SVR ignores small errors within the epsilon margin, making it more robust and reliable for real-world data. This video is perfect for: Machine Learning beginners Students learning regression algorithms Anyone preparing for ML interviews or exams Developers who want intuition, not just formulas No heavy math, no confusion—just clear concepts + practical understanding. 📌 Topics Covered: Support Vector Regression Epsilon-insensitive loss Outlier handling in regression Linear Regression vs SVR Model comparison and conclusion If you found this helpful, don’t forget to like, share, and subscribe for more ML content explained in simple terms 🚀