У нас вы можете посмотреть бесплатно Unlocking Business Knowledge Through RAG Based AI Development или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🔴 Unlocking Business Knowledge Through RAG-Based AI Development (How Retrieval Augmented Generation Brings Your Enterprise Data into AI) 📅 February 5 · 9 PM IST – Set Reminder ▶️ Generative AI becomes dramatically more powerful when it can use your business data instead of relying only on what a model already knows. Retrieval Augmented Generation (RAG) is the framework that makes this possible—grounding prompts with relevant, real-time information from documents, databases, and enterprise knowledge sources. This session provides a practical introduction to RAG and how Microsoft Foundry enables developers to build RAG-powered AI solutions that are accurate, trustworthy, and enterprise-ready. Led by Ranjith Kumar, Corporate Trainer, the session demonstrates how to add data, create indexes, and integrate them with generative models to unlock meaningful business insights. 🔍 What you’ll learn: 1. What Retrieval Augmented Generation (RAG) Is Why RAG is essential for enterprise AI applications. How RAG enables AI to respond with grounded, up-to-date information. The core workflow: retrieve → augment → generate. 2. Why RAG Matters for Business AI Improves accuracy by preventing hallucinations. Allows AI to use proprietary knowledge securely. Makes AI suitable for workflows involving policies, documents, FAQs, customer data, and expertise retrieval. 3. RAG in Microsoft Foundry How Microsoft Foundry supports RAG development end-to-end. Uploading and managing enterprise data sources. Creating indexes for fast vector-based retrieval. Integrating indexes with LLMs using Foundry’s orchestration tools. 4. Adding Data & Creating Indexes Supported data types and ingestion options. How indexing works—embeddings, chunking, metadata tagging. Best practices for organizing and preparing data for high-quality retrieval. 5. Building RAG-Based AI Solutions Connecting retrieval steps with generative models. Designing prompt flows that incorporate retrieved context. Common patterns for search-augmented chatbots, document Q&A, and knowledge assistants. 6. Real-World Use Cases Policy and compliance assistants Customer support knowledge bots Internal document search and Q&A Research and summarization automation Business decision support using contextual insights 7. Best Practices for High-Quality RAG Systems Chunk sizing, relevancy tuning, prompt design, and evaluation. Handling confidential data securely. Improving retrieval precision and reducing noise. 8. Live Q&A and Applied Guidance Ask questions about implementation, indexing, architecture, and optimization. Hands-on insights for developers and enterprise AI teams. 🎯 Who should attend? Developers & AI engineers Data and application architects Teams building chatbots, Q&A, or internal knowledge tools Professionals integrating enterprise data with generative AI Anyone exploring RAG as a foundation for trustworthy AI Speaker: Ranjith Kumar Corporate Trainer | Koenig Solutions Pvt. Ltd. 📢 Follow & Learn More: 🔗 Koenig Solutions: https://www.koenig-solutions.com 🔗 LinkedIn: / koenig-solutions 🔗 Facebook: / koenigsolutions 🔗 Instagram: / koenigsolutions 🔗 Twitter (X): https://x.com/KoenigSolutions 🔗 Upcoming Webinars: https://www.koenig-solutions.com/upco... 🧠 If you want to make AI intelligent with your business knowledge, this session will show you exactly how RAG unlocks next-level accuracy and enterprise value. 👍 Like | 💬 Comment | 🔔 Subscribe for more expert-led AI development and Microsoft Foundry sessions. #KoenigWebinars #KoenigSolutions #StepForward #RAG #RetrievalAugmentedGeneration #MicrosoftFoundry #EnterpriseAI #LLMDevelopment