У нас вы можете посмотреть бесплатно The Tishchenko Reaction или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this Named Reaction episode, we explore the Tishchenko reaction and related transformations. This episode has an associated problem set available to download on synthesis-workshop.com. References (in order of appearance): Seminal work on the Tishchenko reaction: (a) Ber. 1887, 20, 646. (b) J. Russ. Phys. Chem. Soc. 1906, 38, 355. (c) Chem. Zentr. 1906, II, 1309-1311. (d) Chem. Zentr. 1906, II, 1552-1555. (e) Chem. Zentr. 1906, II, 155-1556. For an early mechanistic discussion, see: J. Am. Chem. Soc. 1952, 74, 5133-5135. Variants with divalent or trivalent Sm have been reported: (a) J. Org. Chem. 1999, 64, 843-853. (b) J. Org. Chem. 2001, 66, 8573-8584. X is sometimes left unspecified in literature and other times is replaced with two iodine ligands. For foundational work on the Evans-Tishchenko reaction, see: J. Am. Chem. Soc. 1990, 112, 6447-6449. J. Am. Chem. Soc. 2004, 126, 7782-7783. For a pioneering example, see: Angew. Chem. Int. Ed. 2001, 40, 601-603. For a review on developments in the asymmetric aldol-Tishchenko reaction, see: Eur. J. Org. Chem. 2006, 2006, 4779-4786. Org. Lett. 2015, 17, 5642-5645. For more on the Ellman auxiliary, see: Chem. Rev. 2010, 110, 3600-3740. For other recent developments, see: (a) J. Org. Chem. 2021, 86, 4296-4303. (b) Org. Lett. 2021, 23, 6372-6376. For more on samarium promoted aldol reactions and aldol-Tishchenko: (a) J. Org. Chem. 1999, 64, 843-853. (b) J. Org. Chem. 2001, 66, 8573-8584. b-hydroxyketone intermediate may also be drawn as an alkoxide. For another example of using SmI2 to utilize a-bromoketones in Reformatsky-type reactions, see: (a) J. Am. Chem. Soc. 2006, 128, 15106-15107. (b) J. Org. Chem. 2007, 72, 9736-9745. Org. Lett. 2019, 21, 5471-5474. For more on the synthesis of this starting material, see: Org. Lett. 2011, 13, 2506-2509. Angew. Chem. Int. Ed. 2018, 57, 5143-5146. Also see work on this target using the Narasaka-Prasad reduction: (a) J. Am. Chem. Soc. 2010, 132, 10286-10292. (b) J. Am. Chem. Soc. 2015, 137, 15426-15429. For further developments, see: Chem. Asian J. 2020, 15, 3494-3502. Also see work on this target using the Narasaka-Prasad reduction: (a) J. Am. Chem. Soc. 2010, 132, 10286-10292. (b) J. Am. Chem. Soc. 2015, 137, 15426-15429. J. Am. Chem. Soc. 2015, 137, 15426-15429. For more on this dithiane deprotection, see: Tetrahedron Lett. 2013, 54, 5477-5480. For more on the Narasaka-Prasad reduction, see: Tetrahedron 1984, 40, 2233-2238. For a foundational application of the Narasaka-Prasad reduction in this system, see: J. Am. Chem. Soc. 2010, 132, 10286-10292. Science 2017, 358, 218-223. For original reports of Evans-Saksena Reduction, see a) Tetrahedron Lett. 1983, 24, 273-276; b) J. Am. Chem. Soc. 1988, 110, 3560-3578. Org. Biomol. Chem. 2011, 9, 984-986. Also see the work of Kim and Hong on this target: Org. Lett. 2010, 12, 2880-2883. J. Am. Chem. Soc. 2003, 125, 350-351. For prior work on this type of Evans-Tishchenko reaction, see: Org. Lett. 2002, 4, 4539-4541. Related applications: (a) Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12042-12047. (b) J. Am. Chem. Soc. 2007, 129, 10957-10962.