Π£ Π½Π°Ρ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ Π±Π΅ΡΠΏΠ»Π°ΡΠ½ΠΎ Bifurcations of Limit Cycles - Dynamical Systems Extra Credit | Lecture 7 ΠΈΠ»ΠΈ ΡΠΊΠ°ΡΠ°ΡΡ Π² ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΠΎΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅, Π²ΠΈΠ΄Π΅ΠΎ ΠΊΠΎΡΠΎΡΠΎΠ΅ Π±ΡΠ»ΠΎ Π·Π°Π³ΡΡΠΆΠ΅Π½ΠΎ Π½Π° ΡΡΡΠ±. ΠΠ»Ρ Π·Π°Π³ΡΡΠ·ΠΊΠΈ Π²ΡΠ±Π΅ΡΠΈΡΠ΅ Π²Π°ΡΠΈΠ°Π½Ρ ΠΈΠ· ΡΠΎΡΠΌΡ Π½ΠΈΠΆΠ΅:
ΠΡΠ»ΠΈ ΠΊΠ½ΠΎΠΏΠΊΠΈ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΡ Π½Π΅
Π·Π°Π³ΡΡΠ·ΠΈΠ»ΠΈΡΡ
ΠΠΠΠΠΠ’Π ΠΠΠΠ‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡΠ΅ ΡΡΡΠ°Π½ΠΈΡΡ
ΠΡΠ»ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎ ΡΠΊΠ°ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π²ΠΈΠ΄Π΅ΠΎ, ΠΏΠΎΠΆΠ°Π»ΡΠΉΡΡΠ° Π½Π°ΠΏΠΈΡΠΈΡΠ΅ Π² ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ ΠΏΠΎ Π°Π΄ΡΠ΅ΡΡ Π²Π½ΠΈΠ·Ρ
ΡΡΡΠ°Π½ΠΈΡΡ.
Π‘ΠΏΠ°ΡΠΈΠ±ΠΎ Π·Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ²ΠΈΡΠ° ClipSaver.ru
Just like fixed points, limit cycles can undergo bifurcations as well. In this lecture we review three of the main limit cycle bifurcations. We will see that limit cycles can emerge through saddle-node bifurcations, while also showing that saddle-node bifurcations of fixed points can occur on the limit cycle itself. We also examine a global bifurcation - the homoclinic bifurcation - where a limit cycle expands until it attaches itself to a fixed point and creates a homoclinic orbit. Example systems exhibiting each type of bifurcation are provided throughout this lecture. Recall bifurcations of fixed points with these lectures: Saddle-node bifurcations Β Β Β β’Β SaddleΒ NodeΒ BifurcationsΒ -Β DynamicalΒ Syste...Β Β Transcritical bifurcations Β Β Β β’Β TranscriticalΒ BifurcationsΒ -Β DynamicalΒ Sys...Β Β Pitchfork bifurcations Β Β Β β’Β PitchforkΒ BifurcationsΒ -Β DynamicalΒ Systems...Β Β Lecture series on dynamical systems: Β Β Β β’Β WelcomeΒ -Β DynamicalΒ SystemsΒ |Β IntroΒ LectureΒ Β Lectures series on differential equations: Β Β Β β’Β WelcomeΒ -Β OrdinaryΒ DifferentialΒ EquationsΒ ...Β Β More information on the instructor: https://hybrid.concordia.ca/jbrambur/ Follow @jbramburger7 on Twitter for updates.