У нас вы можете посмотреть бесплатно Yuxing Zhou - Device-scale simulations of memory materials enabled by fast interatomic potentials или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Talk Abstract: Atomistic simulations play an important role in understand fundamental properties and working mechanisms of phase-change materials (PCM)-based devices. Our recent work has shown that machine-learning (ML)-driven molecular dynamics simulations enable accurate description of Ge–Sb–Te alloys, particularly for compounds on the GeTe–Sb2Te3 tie-line (GST)1. Using an ML potential based on the Gaussian approximation potential (GAP) framework, we demonstrate a device-scale RESET (“1→0”) simulation over 50 ps in a device-scale model of 532,980 atoms (corresponding to a real device size of 40 × 20 × 20 nm3; Fig. 1). However, realistic switching operations in GST devices usually take tens of nanoseconds. More importantly, non-isothermal conditions are prominent in GST devices, which can lead to distinct SET or RESET states as compared to isothermal conditions, thus complicating accurate modelling of phase transitions in real devices. In this talk, I will demonstrate full-cycle device-scale simulations of GST devices under realistic programming conditions. I will introduce a new ML potential based on the Atomic Cluster Expansion (ACE) framework2. The new ACE potential is more than 400 times faster than the GAP potential, which enables full-loop simulations (multiple RESET to SET operations) of cross-point and mushroom-type devices at extensive length scales (involving sub-million atoms) and time scales (tens of nanoseconds). Next, I will present a new simulation protocol that describes non-isothermal conditions and temperature gradients of any desired level of spatiotemporal complexity. Based on these ML-driven MD simulations, we show temperature-dependent crystallisation behaviours of GST, elucidating the interplay between nucleation and growth under non-isothermal crystallisation in GST memory devices. This talk presents a platform for the predictive modelling of PCM-based memory devices, and more widely, it highlights the power of highly scalable atomistic machine-learning models for modern materials science and engineering.