У нас вы можете посмотреть бесплатно DOE CSGF 2019: Optimization in the Space of Measures: Machine Learning Using Optimal Transport или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
View more information on the DOE CSGF Program at http://www.krellinst.org/csgf Over the past decade, unparalleled growth in data availability and computational power has driven extensive development of new algorithms and statistical methods capable of handling and exploiting such resources. Indeed, from deep learning to variational inference, this increase in data and computation has led to the creation of new generations of statistical models and algorithms whose complexity and size are ever-expanding. Unfortunately, however, rigorous understanding of the mechanisms of these new, complex models has lagged. This means that now, more than ever, there is a need for a new approaches for understanding these mechanisms and guiding the development of further algorithms. Using a set of recently developed tools from the field of optimal transport, we present a new rigorous methodology for understanding and fitting a suite of recently developed models in machine learning. We show how current algorithmic procedures, through the lens of optimal transport, can be interpreted as discretizations of an infinite dimensional gradient flow and how this interpretation yields new, better-performing methods, along with techniques that are robust to adversarial manipulation.