У нас вы можете посмотреть бесплатно Day -01 Of 50 Days Hard | Trigonometry PYQs With Revision | Maths Class -10 CBSE | Abhay Singh или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
This video is about Revision Class Of Trigonometry Here's a summary of the key topics and problem-solving techniques demonstrated: Verifying Trigonometric Identities (0:25-1:29): The instructor shows how to verify identities like sin(A+B) = sin A cos B + cos A sin B by substituting given angle values and comparing both sides of the equation. Finding Angles and Evaluating Expressions (1:31-2:10): The video demonstrates how to determine an angle when a trigonometric ratio (e.g., tan A = √3) is given and then use that angle to evaluate other trigonometric expressions. Solving Equations with Trigonometric Ratios (2:11-5:42): A detailed step-by-step solution is provided for an equation involving variables and various trigonometric function values (e.g., cos 30°, cos 0°, sin 30°, cot 45°), requiring algebraic manipulation after substituting the known values. Proving Complex Trigonometric Identities (5:50-8:37): The instructor walks through the proof of an identity such as (sin A + cosec A)² + (cos A + sec A)² = 7 + tan² A + cot² A, utilizing algebraic expansion, fundamental identities (like sin A cosec A = 1), and Pythagorean identities (e.g., cosec² A = 1 + cot² A). Finding Missing Ratios using Triangles (8:47-9:50): The video explains how to find other trigonometric ratios (cos A, tan A) when one ratio (sin A) is given, by constructing a right-angled triangle and applying the Pythagorean theorem to find the missing side. Calculating Specific Angle Values using Formulas (9:58-12:12): The process of finding the value of sin 15° is shown using the sin(A-B) formula, by strategically choosing angles (like 60° and 45° or 45° and 30°) whose trigonometric values are commonly known. Solving Elimination Problems with Trigonometric Ratios (12:12-17:21): A more advanced problem involving secθ and tanθ in simultaneous equations is solved by squaring both equations and subtracting them to leverage the identity sec²θ - tan²θ = 1. Applying Identities to Find Values (18:20-21:18): The instructor demonstrates how to derive the identity 1 + tan² A = sec² A from sin² A + cos² A = 1 and then uses this derived identity to find the value of tan A when sec A is provided. Solving Simultaneous Equations for Angles (21:23-23:14): The video concludes by showing how to solve for unknown angles A and B from simultaneous equations involving trigonometric ratios (e.g., 2sin(A+B) = √3 and cos(A-B) = 1) by determining the angle corresponding to the given trigonometric value. Homework and Upcoming Topics (23:15-25:40): The instructor assigns homework from a PDF containing numerous trigonometry problems and outlines the plan for the next day, which includes revising chemical reactions and equations.