• ClipSaver
  • dtub.ru
ClipSaver
РусскиС Π²ΠΈΠ΄Π΅ΠΎ
  • Π‘ΠΌΠ΅ΡˆΠ½Ρ‹Π΅ Π²ΠΈΠ΄Π΅ΠΎ
  • ΠŸΡ€ΠΈΠΊΠΎΠ»Ρ‹
  • ΠžΠ±Π·ΠΎΡ€Ρ‹
  • Новости
  • ВСсты
  • Π‘ΠΏΠΎΡ€Ρ‚
  • Π›ΡŽΠ±ΠΎΠ²ΡŒ
  • ΠœΡƒΠ·Ρ‹ΠΊΠ°
  • Π Π°Π·Π½ΠΎΠ΅
БСйчас Π² Ρ‚Ρ€Π΅Π½Π΄Π΅
  • Π€Π΅ΠΉΠ³ΠΈΠ½ Π»Π°ΠΉΡ„
  • Π’Ρ€ΠΈ ΠΊΠΎΡ‚Π°
  • Π‘Π°ΠΌΠ²Π΅Π» адамян
  • А4 ΡŽΡ‚ΡƒΠ±
  • ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π±ΠΈΡ‚
  • Π³ΠΈΡ‚Π°Ρ€Π° с нуля
Π˜Π½ΠΎΡΡ‚Ρ€Π°Π½Π½Ρ‹Π΅ Π²ΠΈΠ΄Π΅ΠΎ
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

Center Manifold Theory- Computing Center Manifolds, Lecture 3 ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π² Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΌ качСствС

Center Manifold Theory- Computing Center Manifolds, Lecture 3 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄

ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎ

ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ mp3

ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ mp4

ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ

Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ с ΠΊΠ°ΠΌΠ΅Ρ€ΠΎΠΉ

Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½ с Π²ΠΈΠ΄Π΅ΠΎ

бСсплатно

Π·Π°Π³Ρ€ΡƒΠ·ΠΈΡ‚ΡŒ,

НС удаСтся Π·Π°Π³Ρ€ΡƒΠ·ΠΈΡ‚ΡŒ Youtube-ΠΏΠ»Π΅Π΅Ρ€. ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΊΡƒ Youtube Π² вашСй сСти.
ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠ΅ΠΌ ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΡƒ...
Center Manifold Theory- Computing Center Manifolds, Lecture 3
  • ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ Π’Πš
  • ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ Π² ОК
  •  
  •  


Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π²ΠΈΠ΄Π΅ΠΎ с ΡŽΡ‚ΡƒΠ± ΠΏΠΎ ссылкС ΠΈΠ»ΠΈ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π±Π΅Π· Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²ΠΎΠΊ Π½Π° сайтС: Center Manifold Theory- Computing Center Manifolds, Lecture 3 Π² качСствС 4k

Π£ нас Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ бСсплатно Center Manifold Theory- Computing Center Manifolds, Lecture 3 ΠΈΠ»ΠΈ ΡΠΊΠ°Ρ‡Π°Ρ‚ΡŒ Π² максимальном доступном качСствС, Π²ΠΈΠ΄Π΅ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π±Ρ‹Π»ΠΎ Π·Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΎ Π½Π° ΡŽΡ‚ΡƒΠ±. Для Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡ‹ Π½ΠΈΠΆΠ΅:

  • Π˜Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ ΠΏΠΎ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠ΅:

Π‘ΠΊΠ°Ρ‡Π°Ρ‚ΡŒ mp3 с ΡŽΡ‚ΡƒΠ±Π° ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°ΠΉΠ»ΠΎΠΌ. БСсплатный Ρ€ΠΈΠ½Π³Ρ‚ΠΎΠ½ Center Manifold Theory- Computing Center Manifolds, Lecture 3 Π² Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ MP3:


Если ΠΊΠ½ΠΎΠΏΠΊΠΈ скачивания Π½Π΅ Π·Π°Π³Ρ€ΡƒΠ·ΠΈΠ»ΠΈΡΡŒ ΠΠΠ–ΠœΠ˜Π’Π• Π—Π”Π•Π‘Π¬ ΠΈΠ»ΠΈ ΠΎΠ±Π½ΠΎΠ²ΠΈΡ‚Π΅ страницу
Если Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ со скачиваниСм Π²ΠΈΠ΄Π΅ΠΎ, поТалуйста Π½Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π² ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΡƒ ΠΏΠΎ адрСсу Π²Π½ΠΈΠ·Ρƒ страницы.
Бпасибо Π·Π° использованиС сСрвиса ClipSaver.ru



Center Manifold Theory- Computing Center Manifolds, Lecture 3

Lecture 3 of a short course on 'Center manifolds, normal forms, and bifurcations'. Center manifold theory for continuous dynamical systems (ODEs) with equilibrium points that have only stable and center directions. The Taylor series approximation of the center manifold is discussed, as well as the dynamics (that is, the vector field) restricted to the center manifold, which reveals whether the equilibrium point in the full space is stable or unstable. A 2D example is given and the failure of the center subspace approximation, i.e., the Galerkin method, is illustrated. A 3D example is also given, where a linear coordinate transformation must first be done to put the ordinary differential equation into the standard form. β–Ί Jump to center manifold theory computations: 15:05 β–Ί Next lecture: Center manifolds depending on parameters | related to bifurcations| Lorenz system bifurcation part 1 Β Β Β β€’Β CenterΒ ManifoldsΒ DependingΒ onΒ Parameters-Β ...Β Β  β–Ί Previous lecture: Hyperbolic vs non-hyperbolic fixed points and computing their invariant manifolds via Taylor series Β Β Β β€’Β HyperbolicΒ vsΒ Non-HyperbolicΒ FixedΒ Points-...Β Β  β–Ί Course playlist 'Center manifolds, normal forms, and bifurcations' https://is.gd/CenterManifolds β–Ί Dr. Shane Ross, chaotician, Virginia Tech professor (Caltech PhD) Subscribe https://is.gd/RossLabSubscribe​ Research http://chaotician.com​ β–Ί Follow me on Twitter Β Β /Β rossdynamicslabΒ Β  β–Ί Class lecture notes (PDF) https://drive.google.com/drive/folder... β–Ί in OneNote form https://1drv.ms/u/s!ApKh50Sn6rEDiUIr4... β–Ί Are you a beginner? Go to the 'Nonlinear Dynamics and Chaos' online course Course playlist https://is.gd/NonlinearDynamics β–Ί Courses and Playlists by Dr. Ross πŸ“šAttitude Dynamics and Control https://is.gd/SpaceVehicleDynamics πŸ“šNonlinear Dynamics and Chaos https://is.gd/NonlinearDynamics πŸ“šHamiltonian Dynamics https://is.gd/AdvancedDynamics πŸ“šThree-Body Problem Orbital Mechanics https://is.gd/SpaceManifolds πŸ“šLagrangian and 3D Rigid Body Dynamics https://is.gd/AnalyticalDynamics πŸ“šCenter Manifolds, Normal Forms, and Bifurcations https://is.gd/CenterManifolds Chapters: 0:00 Center Manifold Theory introduction 1:10 Motivation from linear vector fields with block diagonal matrix D=diag{A,B} where A has only eigenvalues of zero real part and B is a matrix having only eigenvalues of negative real part. We need to focus on exp(A*t) to know the stability of the equilibrium. 7:45 Nonlinear case, expanding about an equilibrium point. Need to know the nonlinear vector field along the center manifold. 15:05 Center manifold theory computation 20:55 Approximate the center manifold locally as a function and do a Taylor series expansion to obtain it 24:45 Vector field on the center manifold 30:03 the tangency condition, main computational 'workhouse' 32:15 2D example: two-dimensional system where stability of the origin is not obvious 50:26 Why not do a tangent space (Galerkin) approximation for center manifold dynamics? 59:03 3D example with 2D center manifold Lecture 2020-06-09, Summer 2020 Reference: Stephen Wiggins [2003] Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second Edition, Springer. https://www.springer.com/gp/book/9780... #CenterManifold #NonlinearDynamics #DynamicalSystems #Bifurcations #Slowmanifold #Wiggins #Verhulst #ZeroEigenvalue #DifferentialEquation #mathematics #DynamicalSystem #Centre #Wiggins #CentreManifold #CenterManifoldTheorem #Nonhyperbolic #Equilibria #Equilibrium #FixedPoint #TaylorSeries #TaylorExpansion #Subspace #InvariantManifold #InvariantSet #Bifurcation #NormalForm #AppliedMath #AppliedMathematics #Math

Comments
  • Center Manifolds Depending on Parameters- Bifurcations| Lorenz System Bifurcation, Part 1, Lecture 4 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    Center Manifolds Depending on Parameters- Bifurcations| Lorenz System Bifurcation, Part 1, Lecture 4
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • Hyperbolic vs Non-Hyperbolic Fixed Points- Computing Invariant Manifolds via Taylor Series Lecture 2 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    Hyperbolic vs Non-Hyperbolic Fixed Points- Computing Invariant Manifolds via Taylor Series Lecture 2
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • Stable, Unstable, & Center Subspaces and Examples- Lecture 1 of a Course 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    Stable, Unstable, & Center Subspaces and Examples- Lecture 1 of a Course
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • Π’Π΅ΠΌΡ‹ Π² динамичСских систСмах: Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, линСаризация, ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹Π΅ многообразия, Π±ΠΈΡ„ΡƒΡ€ΠΊΠ°... 3 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    Π’Π΅ΠΌΡ‹ Π² динамичСских систСмах: Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, линСаризация, ΠΈΠ½Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π½Ρ‹Π΅ многообразия, Π±ΠΈΡ„ΡƒΡ€ΠΊΠ°...
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 3 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • Local Bifurcation Theory: Center Manifolds & Normal Forms | Online Course
    Local Bifurcation Theory: Center Manifolds & Normal Forms | Online Course
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ:
  • ΠšΠ΅Ρ€Ρ‚ΠΈΡ МакмаллСн: ΠœΠ½ΠΎΠ³ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ, топология ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    ΠšΠ΅Ρ€Ρ‚ΠΈΡ МакмаллСн: ΠœΠ½ΠΎΠ³ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΡ, топология ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • 412 14 Center Manifold Reduction 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    412 14 Center Manifold Reduction
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • ΠŸΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ†ΠΈΠΊΠ»Ρ‹, Ρ‡Π°ΡΡ‚ΡŒ 1: Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    ΠŸΡ€Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ†ΠΈΠΊΠ»Ρ‹, Ρ‡Π°ΡΡ‚ΡŒ 1: Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • НСлинСйная Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°: устойчивыС ΠΈ нСустойчивыС многообразия 6 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    НСлинСйная Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ°: устойчивыС ΠΈ нСустойчивыС многообразия
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 6 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • Hopf Bifurcations - Dynamical Systems | Lecture 26 2 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    Hopf Bifurcations - Dynamical Systems | Lecture 26
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 2 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • ΠŸΠΎΡ‡Π΅ΠΌΡƒ ΠŸΠΈΡ‚Π΅Ρ€ Π¨ΠΎΠ»ΡŒΡ†Π΅ β€” ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ, ΠΊΠ°ΠΊΠΈΡ… Π±Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π· Π² ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅? 1 мСсяц Π½Π°Π·Π°Π΄
    ΠŸΠΎΡ‡Π΅ΠΌΡƒ ΠŸΠΈΡ‚Π΅Ρ€ Π¨ΠΎΠ»ΡŒΡ†Π΅ β€” ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ, ΠΊΠ°ΠΊΠΈΡ… Π±Ρ‹Π²Π°Π΅Ρ‚ Ρ€Π°Π· Π² ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅?
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 1 мСсяц Π½Π°Π·Π°Π΄
  • ГипСрболичСскиС Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ – ДинамичСскиС систСмы | ЛСкция 16 2 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    ГипСрболичСскиС Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ – ДинамичСскиС систСмы | ЛСкция 16
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 2 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • ЛСкция 2B: Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² многообразия (дискрСтная Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ гСомСтрия) 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    ЛСкция 2B: Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² многообразия (дискрСтная Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ гСомСтрия)
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • 412 13 Center Manifold 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    412 13 Center Manifold
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • Floquet Theory 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    Floquet Theory
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 5 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • Bifurcations in 2D, Part 1: Introduction, Saddle-Node, Pitchfork, Examples 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    Bifurcations in 2D, Part 1: Introduction, Saddle-Node, Pitchfork, Examples
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
  • Riemannian manifolds, kernels and learning 9 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    Riemannian manifolds, kernels and learning
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 9 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • ВСрСнс Π’Π°ΠΎ ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π“Ρ€ΠΈΠ³ΠΎΡ€ΠΈΠΉ ΠŸΠ΅Ρ€Π΅Π»ΡŒΠΌΠ°Π½ Ρ€Π΅ΡˆΠΈΠ» Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ ΠŸΡƒΠ°Π½ΠΊΠ°Ρ€Π΅ | ЛСкс Π€Ρ€ΠΈΠ΄ΠΌΠ°Π½ 3 мСсяца Π½Π°Π·Π°Π΄
    ВСрСнс Π’Π°ΠΎ ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π“Ρ€ΠΈΠ³ΠΎΡ€ΠΈΠΉ ΠŸΠ΅Ρ€Π΅Π»ΡŒΠΌΠ°Π½ Ρ€Π΅ΡˆΠΈΠ» Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ ΠŸΡƒΠ°Π½ΠΊΠ°Ρ€Π΅ | ЛСкс Π€Ρ€ΠΈΠ΄ΠΌΠ°Π½
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 3 мСсяца Π½Π°Π·Π°Π΄
  • C17 Poincare Map Intro 10 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
    C17 Poincare Map Intro
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 10 Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄
  • The Lyapunov stability theorem 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄
    The Lyapunov stability theorem
    ΠžΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½ΠΎ: 4 Π³ΠΎΠ΄Π° Π½Π°Π·Π°Π΄

ΠšΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½Ρ‹ΠΉ email для ΠΏΡ€Π°Π²ΠΎΠΎΠ±Π»Π°Π΄Π°Ρ‚Π΅Π»Π΅ΠΉ: u2beadvert@gmail.com © 2017 - 2026

ΠžΡ‚ΠΊΠ°Π· ΠΎΡ‚ отвСтствСнности - Disclaimer ΠŸΡ€Π°Π²ΠΎΠΎΠ±Π»Π°Π΄Π°Ρ‚Π΅Π»ΡΠΌ - DMCA Условия использования сайта - TOS



ΠšΠ°Ρ€Ρ‚Π° сайта 1 ΠšΠ°Ρ€Ρ‚Π° сайта 2 ΠšΠ°Ρ€Ρ‚Π° сайта 3 ΠšΠ°Ρ€Ρ‚Π° сайта 4 ΠšΠ°Ρ€Ρ‚Π° сайта 5