У нас вы можете посмотреть бесплатно MLT __init__ Session #9: Self-Distillation as Instance-Specific Label Smoothing или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
📌 Session #9: Self-Distillation as Instance-Specific Label Smoothing 📌 Paper Reading 📌 Zhang and Sabuncu (2020): Self-distillation as instance-specific label smoothing https://arxiv.org/abs/2006.05065 ● WE HIGHLY RECOMMEND READING “DISTILLING THE KNOWLEDGE IN A NEURAL NETWORK” (Hinton et al 2014) AS WELL https://arxiv.org/abs/1503.02531 MLT _init_ is a monthly event led by Jayson Cunanan and J. Miguel Valverde where a paper is first presented by a volunteer and then discussed among all attendees. Our goal is to give participants good initializations to study Deep Learning effectively. We also hope to promote collaboration between participants. We will try to achieve this by: Discussing fundamental papers whose key ideas apply to state-of-the-art models. Providing the audience with summaries, codes, and visualizations to help understand the critical parts of a research paper. Find more information, the videos, and materials from previous sessions in https://github.com/Machine-Learning-T... 📌 Presenter: Mauricio Orbes, Research scientist. Mauricio Orbes is a research scientist at Omhu (Copenhagen, Denmark) and a Ph.D. candidate at King's College London, School of Biomedical Engineering and Imaging Sciences. My research interest is machine learning in general with a special focus on solving robustness-related issues on deep learning models for real-world complex scenarios, specifically in the field of medical imaging. More info: / mauricio-orbes-b13916157 ========================= MLT (Machine Learning Tokyo) site: github: https://github.com/Machine-Learning-T... slack: https://machinelearningtokyo.slack.co... discuss: https://discuss.mltokyo.ai/ twitter: / __mlt__ meetup: https://www.meetup.com/Machine-Learni... facebook: / machinelearningtokyo