У нас вы можете посмотреть бесплатно Large Language Models for Tacit Knowledge Extraction and Transfer with Mina Cho или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
A central challenge in knowledge transfer lies in the transfer of tacit knowledge. LLMs, capable of identifying latent patterns in data, present an interesting opportunity to address this issue. This paper explores the potential of LLMs to externalize experts’ tacit knowledge and aid its transfer to novices. Specifically, we examine three questions: RQ1: Can LLMs effectively externalize experts’ tacit knowledge? How to do so (e.g., prompting strategy)? RQ2: How can LLMs use externalized tacit knowledge to make effective decisions? RQ3: How can LLM-externalized tacit knowledge support novice learning? We explore these questions using real-world tutoring conversations collected by Wang et al. (2024). Our findings suggest that LLMs may be capturing nuances from experts’ observed behavior that are different from the knowledge experts articulate. With carefully designed prompting strategies, LLMs may offer a practical and scalable means of externalizing and transferring tacit knowledge.