• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

“What's wrong with LLMs and what we should be building instead” - Tom Dietterich - скачать в хорошем качестве

“What's wrong with LLMs and what we should be building instead” - Tom Dietterich - 1 year ago

Thomas G. Dietterich

emeritus professor

computer science

Oregon State University

pioneers

machine learning

executive editor

journal

Machine Learning

Journal of Machine Learning Research

valgrAI Scientific Council

Keynote

LLMs (Large Language Models)

Training

Updating

Non-linguistic knowledge

False statements

Self-contradictory statements

Socially inappropriate

Ethically inappropriate

Shortcomings

Efforts

Existing framework

Modular architecture

Decomposes

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
“What's wrong with LLMs and what we should be building instead” - Tom Dietterich -
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: “What's wrong with LLMs and what we should be building instead” - Tom Dietterich - в качестве 4k

У нас вы можете посмотреть бесплатно “What's wrong with LLMs and what we should be building instead” - Tom Dietterich - или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон “What's wrong with LLMs and what we should be building instead” - Tom Dietterich - в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



“What's wrong with LLMs and what we should be building instead” - Tom Dietterich -

Thomas G. Dietterich is emeritus professor of computer science at Oregon State University. He is one of the pioneers of the field of machine learning. He served as executive editor of the journal called Machine Learning (1992–98) and helped co-found the Journal of Machine Learning Research. He is one of the members of our select valgrAI Scientific Council. Keynote: “What's wrong with LLMs and what we should be building instead” Abstract: Large Language Models provide a pre-trained foundation for training many interesting AI systems. However, they have many shortcomings. They are expensive to train and to update, their non-linguistic knowledge is poor, they make false and self-contradictory statements, and these statements can be socially and ethically inappropriate. This talk will review these shortcomdifferentings and current efforts to address them within the existing LLM framework. It will then argue for a , more modular architecture that decomposes the functions of existing LLMs and adds several additional components. We believe this alternative can address all of the shortcomings of LLMs. We will speculate about how this modular architecture could be built through a combination of machine learning and engineering. Timeline: 00:00-02:00 - Introducción 00:00-02:00 Introduction to large language models and their capabilities 02:01-3:14 Problems with large language models: Incorrect and contradictory answers 03:15-4:28 Problems with large language models: Dangerous and socially unacceptable answers 04:29-6:40 Problems with large language models: Expensive to train and lack of updateability 06:41-12:58 Problems with large language models: Lack of attribution and poor non-linguistic knowledge 12:59-15:02 Benefits and limitations of retrieval augmentation 15:03-15:59 Challenges of attribution and data poisoning 16:00-18:00 Strategies to improve consistency in model answers 18:01-21:00 Reducing dangerous and socially inappropriate outputs 21:01-25:26 Learning and applying non-linguistic knowledge 25:27-37:35 Building modular systems to integrate reasoning and planning 37:36-39:20 Large language models have surprising capabilities but lack knowledge bases. 39:21-40:47 Building modular systems that separate linguistic skill from world knowledge is important. 40:48-45:47 Questions and discussions on cognitive architectures and addressing the issue of miscalibration. 45:48 Overcoming flaws in large language models through prompting engineering and verification. Follow us! LinkedIn:   / valgrai   Instagram:   / valgrai   Youtube:    / @valgrai   Twitter:   / fvalgrai  

Comments
  • What do tech pioneers think about the AI revolution? - BBC World Service 9 months ago
    What do tech pioneers think about the AI revolution? - BBC World Service
    Опубликовано: 9 months ago
    1641115
  • Large Language Models (LLMs) - Everything You NEED To Know 1 year ago
    Large Language Models (LLMs) - Everything You NEED To Know
    Опубликовано: 1 year ago
    245165
  • Visualising software architecture with the C4 model - Simon Brown, Agile on the Beach 2019 5 years ago
    Visualising software architecture with the C4 model - Simon Brown, Agile on the Beach 2019
    Опубликовано: 5 years ago
    474861
  • “Self-Organizing Nervous System for Robot Swarms” - Marco Dorigo - #VSCF2023 1 year ago
    “Self-Organizing Nervous System for Robot Swarms” - Marco Dorigo - #VSCF2023
    Опубликовано: 1 year ago
    492
  • The Inside Story of ChatGPT’s Astonishing Potential | Greg Brockman | TED 2 years ago
    The Inside Story of ChatGPT’s Astonishing Potential | Greg Brockman | TED
    Опубликовано: 2 years ago
    1838054
  • Hough Transform | Boundary Detection 4 years ago
    Hough Transform | Boundary Detection
    Опубликовано: 4 years ago
    202291
  • [1hr Talk] Intro to Large Language Models 1 year ago
    [1hr Talk] Intro to Large Language Models
    Опубликовано: 1 year ago
    2776818
  • The Rise of Generative AI for Business 1 year ago
    The Rise of Generative AI for Business
    Опубликовано: 1 year ago
    208800
  • Transformers (how LLMs work) explained visually | DL5 1 year ago
    Transformers (how LLMs work) explained visually | DL5
    Опубликовано: 1 year ago
    6376358
  • The AI Revolution Is Underhyped | Eric Schmidt | TED 13 days ago
    The AI Revolution Is Underhyped | Eric Schmidt | TED
    Опубликовано: 13 days ago
    1228111

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS