• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

[1hr Talk] Intro to Large Language Models скачать в хорошем качестве

[1hr Talk] Intro to Large Language Models 1 year ago

video

sharing

camera phone

video phone

free

upload

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
[1hr Talk] Intro to Large Language Models
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: [1hr Talk] Intro to Large Language Models в качестве 4k

У нас вы можете посмотреть бесплатно [1hr Talk] Intro to Large Language Models или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон [1hr Talk] Intro to Large Language Models в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



[1hr Talk] Intro to Large Language Models

This is a 1 hour general-audience introduction to Large Language Models: the core technical component behind systems like ChatGPT, Claude, and Bard. What they are, where they are headed, comparisons and analogies to present-day operating systems, and some of the security-related challenges of this new computing paradigm. As of November 2023 (this field moves fast!). Context: This video is based on the slides of a talk I gave recently at the AI Security Summit. The talk was not recorded but a lot of people came to me after and told me they liked it. Seeing as I had already put in one long weekend of work to make the slides, I decided to just tune them a bit, record this round 2 of the talk and upload it here on YouTube. Pardon the random background, that's my hotel room during the thanksgiving break. Slides as PDF: https://drive.google.com/file/d/1pxx_... (42MB) Slides. as Keynote: https://drive.google.com/file/d/1FPUp... (140MB) Few things I wish I said (I'll add items here as they come up): The dreams and hallucinations do not get fixed with finetuning. Finetuning just "directs" the dreams into "helpful assistant dreams". Always be careful with what LLMs tell you, especially if they are telling you something from memory alone. That said, similar to a human, if the LLM used browsing or retrieval and the answer made its way into the "working memory" of its context window, you can trust the LLM a bit more to process that information into the final answer. But TLDR right now, do not trust what LLMs say or do. For example, in the tools section, I'd always recommend double-checking the math/code the LLM did. How does the LLM use a tool like the browser? It emits special words, e.g. |BROWSER|. When the code "above" that is inferencing the LLM detects these words it captures the output that follows, sends it off to a tool, comes back with the result and continues the generation. How does the LLM know to emit these special words? Finetuning datasets teach it how and when to browse, by example. And/or the instructions for tool use can also be automatically placed in the context window (in the “system message”). You might also enjoy my 2015 blog post "Unreasonable Effectiveness of Recurrent Neural Networks". The way we obtain base models today is pretty much identical on a high level, except the RNN is swapped for a Transformer. http://karpathy.github.io/2015/05/21/... What is in the run.c file? A bit more full-featured 1000-line version hre: https://github.com/karpathy/llama2.c/... Chapters: Part 1: LLMs 00:00:00 Intro: Large Language Model (LLM) talk 00:00:20 LLM Inference 00:04:17 LLM Training 00:08:58 LLM dreams 00:11:22 How do they work? 00:14:14 Finetuning into an Assistant 00:17:52 Summary so far 00:21:05 Appendix: Comparisons, Labeling docs, RLHF, Synthetic data, Leaderboard Part 2: Future of LLMs 00:25:43 LLM Scaling Laws 00:27:43 Tool Use (Browser, Calculator, Interpreter, DALL-E) 00:33:32 Multimodality (Vision, Audio) 00:35:00 Thinking, System 1/2 00:38:02 Self-improvement, LLM AlphaGo 00:40:45 LLM Customization, GPTs store 00:42:15 LLM OS Part 3: LLM Security 00:45:43 LLM Security Intro 00:46:14 Jailbreaks 00:51:30 Prompt Injection 00:56:23 Data poisoning 00:58:37 LLM Security conclusions End 00:59:23 Outro Educational Use Licensing This video is freely available for educational and internal training purposes. Educators, students, schools, universities, nonprofit institutions, businesses, and individual learners may use this content freely for lessons, courses, internal training, and learning activities, provided they do not engage in commercial resale, redistribution, external commercial use, or modify content to misrepresent its intent.

Comments
  • Deep Dive into LLMs like ChatGPT 4 months ago
    Deep Dive into LLMs like ChatGPT
    Опубликовано: 4 months ago
    2717426
  • Large Language Models (LLMs) - Everything You NEED To Know 1 year ago
    Large Language Models (LLMs) - Everything You NEED To Know
    Опубликовано: 1 year ago
    260501
  • What is a Context Window? Unlocking LLM Secrets 4 months ago
    What is a Context Window? Unlocking LLM Secrets
    Опубликовано: 4 months ago
    32858
  • How I use LLMs 3 months ago
    How I use LLMs
    Опубликовано: 3 months ago
    1426950
  • AI, Machine Learning, Deep Learning and Generative AI Explained 10 months ago
    AI, Machine Learning, Deep Learning and Generative AI Explained
    Опубликовано: 10 months ago
    1792073
  • [DeepLearning | видео 1] Что же такое нейронная сеть? 6 years ago
    [DeepLearning | видео 1] Что же такое нейронная сеть?
    Опубликовано: 6 years ago
    848519
  • Chill Music — Deep Focus & Inspiring Mix 10 months ago
    Chill Music — Deep Focus & Inspiring Mix
    Опубликовано: 10 months ago
    2397594
  • How might LLMs store facts | DL7 9 months ago
    How might LLMs store facts | DL7
    Опубликовано: 9 months ago
    1435444
  • LoRA & QLoRA Fine-tuning Explained In-Depth 1 year ago
    LoRA & QLoRA Fine-tuning Explained In-Depth
    Опубликовано: 1 year ago
    84389
  • A Helping Hand for LLMs (Retrieval Augmented Generation) - Computerphile 9 months ago
    A Helping Hand for LLMs (Retrieval Augmented Generation) - Computerphile
    Опубликовано: 9 months ago
    127984

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS



Карта сайта 1 Карта сайта 2 Карта сайта 3 Карта сайта 4 Карта сайта 5