У нас вы можете посмотреть бесплатно The Real Numbers: 10 Axioms That Built All of Mathematics или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Real numbers aren't just decimals. In this visual introduction to Real Analysis (based on Apostol), we build the Real Number System ℝ from exactly 10 axioms. Discover why ℚ has "gaps," why √2 requires the Completeness Axiom, and how these rules build all of calculus. WHAT YOU'LL LEARN: The 5 Field Axioms — Why addition and multiplication work the way they do The 4 Order Axioms — How "less than" actually works mathematically The Completeness Axiom — The single property that separates ℝ from ℚ Why √2 is irrational — A visual proof by contradiction The Archimedean Property — Why no number is "infinitely large" Prime Factorization — Existence AND uniqueness (Fundamental Theorem of Arithmetic) CHAPTERS: 0:00 — Introduction: What are real numbers, really? 0:52 — The Field Axioms (1-5): Arithmetic's Foundation 1:27 — Axiom 1: Commutativity 1:52 — Axiom 2: Associativity 2:11 — Axiom 3: Distributive Law 2:41 — Axiom 4: Subtraction and Zero 3:09 — Axiom 5: Division and One 3:58 — The Order Axioms (6-9): Putting Numbers in Line 4:13 — Axiom 6: Trichotomy 4:28 — Axiom 7-8: Order Preservation 4:55 — Axiom 9: Transitivity 4:55 — Integers and Mathematical Induction 5:30 — Prime Numbers and the Fundamental Theorem 8:10 — Rational Numbers: Dense but Incomplete 8:40 — Why √2 is Irrational (Visual Proof) 10:03 — The Supremum: Least Upper Bounds 11:29 — Axiom 10: The Completeness Axiom 14:05 — The Archimedean Property 14:58 — Conclusion: R is a Complete Ordered Field This video is designed for: Math students taking Real Analysis for the first time Anyone curious about the foundations of mathematics Teachers looking for visual explanations of axioms Self-learners who want rigorous math made intuitive No advanced prerequisites. We start from basic arithmetic and build up. BASED ON: This video covers Sections 1.1–1.13 of Tom Apostol's "Mathematical Analysis" (2nd Edition), one of the most respected textbooks in real analysis. TAKEAWAYS: 1. ℝ is a COMPLETE ORDERED FIELD — these three words encode all 10 axioms 2. Completeness is what separates ℝ from ℚ — rationals have "gaps" 3. The supremum (least upper bound) is the key tool of analysis 4. Mathematical induction is like falling dominoes 5. Prime factorization is unique — this is NOT obvious and requires proof CORRECTIONS & FEEDBACK: Found an error? Have a question? Leave a comment! I read every one. #RealAnalysis #Mathematics #MathAnimation #Axioms #RealNumbers #Completeness #MathEducation #Manim #Proofs #Analysis