У нас вы можете посмотреть бесплатно Lagrange Multipliers, Multivariable Calculus или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Lagrange Multipliers gives us a powerful and elegant way to optimize z = f(x,y) subject to a constraint described as g(x,y) = C. We look for places in the domain where grad f and grad g are parallel, meaning ∇ f = λ ∇ g , where λ is a scalar. To illustrate this, imagine walking on a mountain shaped like the upper hemisphere of z = \sqrt(16 - x^2 - y^2), while following a trail defined by 5x + 2y^2 = 20 . The goal is to find the highest point on this trail, not the mountain's summit. We can use level sets for functions f and g to represent the mountain elevations and the trail, respectively. The gradient of f, representing the direction of steepest ascent, is always perpendicular to the level curves of f. As we our constraint is a level curve for g, ∇ g is always perpendicular to it. The highest point on the trail corresponds to where these gradients are parallel. For a practical example, consider minimizing f(x, y) = x^3 + 2y^2 subject to the constraint x^2 + y^2 = 1 . The process involves setting up a system of equations derived from the condition ∇ f = λ ∇ g and the constraint. Solving this system can vary in difficulty depending on the functions involved. In this example, we explore different scenarios based on the values of x , y , and λ that satisfy the system of equations and the constraint. After solving, we test the potential points in the function f to find the maximum and minimum values subject to the constraint. A graphical representation shows how these values are obtained at specific points on the unit circle, which forms the constraint in our problem. Multivariable Calculus Unit 3 Lecture 17 #mathematics #multivariablecalculus #calculus #optimization #iitjammathematics #calculus3