У нас вы можете посмотреть бесплатно PySpark DataFrames and Schemas | Creating, Reading & Schema Inference Explained with Examples или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
🚀 Welcome to this hands-on PySpark tutorial where we dive deep into DataFrames and Schemas—the foundation of big data processing in Apache Spark! Whether you're just getting started or brushing up your skills, this video covers all the essentials with practical, easy-to-follow examples. 🔍 What You'll Learn: ✅ What is a DataFrame in PySpark? ✅ How to create a DataFrame from lists or RDDs ✅ Reading data from CSV, JSON, and Parquet files ✅ Difference between inferred and manually defined schemas ✅ Using StructType and StructField for custom schemas ✅ How and when to use toDF() method ✅ Real-world tips for schema validation and performance 📂 Includes sample code and data formats to help you follow along, such as: JSON and Parquet examples Schema definition with StructType CSV reading with both inferred and custom schemas 🎓 Perfect For: Data Engineers & Analysts Students learning big data tools Anyone preparing for Spark interviews 📺 Don’t forget to like, share, and subscribe for more PySpark and big data tutorials! #PySpark #DataFrames #Schemas #BigData #ApacheSpark #SparkTutorial #MachineLearning #DataEngineering