• ClipSaver
ClipSaver
Русские видео
  • Смешные видео
  • Приколы
  • Обзоры
  • Новости
  • Тесты
  • Спорт
  • Любовь
  • Музыка
  • Разное
Сейчас в тренде
  • Фейгин лайф
  • Три кота
  • Самвел адамян
  • А4 ютуб
  • скачать бит
  • гитара с нуля
Иностранные видео
  • Funny Babies
  • Funny Sports
  • Funny Animals
  • Funny Pranks
  • Funny Magic
  • Funny Vines
  • Funny Virals
  • Funny K-Pop

What A General Diagonal Argument Looks Like (Category Theory) скачать в хорошем качестве

What A General Diagonal Argument Looks Like (Category Theory) 2 years ago

mathematics

diagonalisation

turing

cantor

russell

godel incompleteness

some2

Не удается загрузить Youtube-плеер. Проверьте блокировку Youtube в вашей сети.
Повторяем попытку...
What A General Diagonal Argument Looks Like (Category Theory)
  • Поделиться ВК
  • Поделиться в ОК
  •  
  •  


Скачать видео с ютуб по ссылке или смотреть без блокировок на сайте: What A General Diagonal Argument Looks Like (Category Theory) в качестве 4k

У нас вы можете посмотреть бесплатно What A General Diagonal Argument Looks Like (Category Theory) или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:

  • Информация по загрузке:

Скачать mp3 с ютуба отдельным файлом. Бесплатный рингтон What A General Diagonal Argument Looks Like (Category Theory) в формате MP3:


Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



What A General Diagonal Argument Looks Like (Category Theory)

Diagonal Arguments are a powerful tool in maths, and appear in several different fundamental results, like Cantor's original Diagonal argument proof (there exist uncountable sets, or "some infinities are bigger than other infinities"), Turing's Halting Problem, Gödel's incompleteness theorems, Russell's Paradox, the Liar Paradox, and even the Y Combinator. In this video, I try and motivate what a general diagonal argument looks like, from first principles. It should be accessible to anyone who's comfortable with functions and sets. The main result that I'm secretly building up towards is Lawvere's theorem in Category Theory [https://link.springer.com/chapter/10....] with inspiration from this motivating paper by Yanofsky [https://www.jstor.org/stable/3109884]. This video will be followed by a more detailed video on just Gödel's incompleteness theorems, building on the idea from this video. ====Timestamps==== 00:00 Introduction 00:59 A first look at uncountability 05:04 Why generalise? 06:53 Mathematical patterns 07:40 Working with functions and sets 11:40 Second version of Cantor's Proof 13:40 Powersets and Cantor's theorem in its generality 15:38 Proof template of Diagonal Argument 16:40 The world of Computers 21:05 Gödel numbering 23:05 An amazing program (setup of the Halting Problem) 25:05 Solution to the Halting Problem 29:49 Comparing two diagonal arguments 31:13 Lawvere's theorem 32:49 Diagonal function as a way for encoding self-reference 35:11 Summary of video 35:44 Bonus treat - Russell's Paradox CORRECTIONS 21:49 - I pronounce "Gödel" incorrectly throughout the video, sorry! Thanks to those who have pointed it out. Let me know if you spot anything else! This video has been submitted to the 3Blue1Brown Summer of Maths Exposition 2 #some2 #mathematics #maths

Comments
  • (Co)Products: motivating category theory 3 weeks ago
    (Co)Products: motivating category theory
    Опубликовано: 3 weeks ago
    18852
  • Percolation: a Mathematical Phase Transition 2 years ago
    Percolation: a Mathematical Phase Transition
    Опубликовано: 2 years ago
    447307
  • A Sensible Introduction to Category Theory 2 years ago
    A Sensible Introduction to Category Theory
    Опубликовано: 2 years ago
    474119
  • But what are Hamming codes? The origin of error correction 4 years ago
    But what are Hamming codes? The origin of error correction
    Опубликовано: 4 years ago
    2612884
  • Mathematician explains Gödel's Incompleteness Theorem | Edward Frenkel and Lex Fridman 2 years ago
    Mathematician explains Gödel's Incompleteness Theorem | Edward Frenkel and Lex Fridman
    Опубликовано: 2 years ago
    481836
  • Universal Construction | Category Theory and Why We Care 1.2 5 months ago
    Universal Construction | Category Theory and Why We Care 1.2
    Опубликовано: 5 months ago
    36969
  • The Topology of the Cantor Set 1 month ago
    The Topology of the Cantor Set
    Опубликовано: 1 month ago
    7132
  • The Language of Categories | Category Theory and Why We Care 1.1 1 year ago
    The Language of Categories | Category Theory and Why We Care 1.1
    Опубликовано: 1 year ago
    32811
  • Godel's 1st Incompleteness Theorem - Proof by Diagonalization 4 years ago
    Godel's 1st Incompleteness Theorem - Proof by Diagonalization
    Опубликовано: 4 years ago
    79382
  • Открытая математическая проблема. Хроматические числа 2 months ago
    Открытая математическая проблема. Хроматические числа
    Опубликовано: 2 months ago
    67680

Контактный email для правообладателей: [email protected] © 2017 - 2025

Отказ от ответственности - Disclaimer Правообладателям - DMCA Условия использования сайта - TOS