У нас вы можете посмотреть бесплатно Introduction to Linear Regression in Python | Chapter 10A Machine Learning Tutorial или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Welcome to Chapter 10A of our Machine Learning tutorial series using Scikit-Learn. In this video, we introduce *Linear Regression**, one of the most fundamental and widely used algorithms in machine learning. This chapter is designed for beginners and focuses on building a strong intuition by explaining Linear Regression both **mathematically using pen and paper* and **practically using Python**. Topics covered in this chapter include: 1. What is Linear Regression Understand what Linear Regression is and why it is used in machine learning. Learn how Linear Regression models the relationship between input features and a continuous target value. 2. Understanding Linear Regression Mathematically Break down the Linear Regression equation step by step. Learn the meaning of slope, intercept, and how predictions are made. Solve Linear Regression problems manually using pen and paper to build intuition. Understand how errors are calculated and minimized. 3. Cost Function and Error Minimization Introduction to the concept of error and loss in regression. Understand Mean Squared Error in simple terms. Learn how Linear Regression finds the best-fitting line. 4. Implementing Linear Regression in Python Learn how to use LinearRegression in Scikit-Learn. Load data, fit the model, and make predictions. Compare manual calculations with model outputs to see how theory matches practice. 5. Real-World Applications Understand how Linear Regression is used in areas like price prediction, trend analysis, forecasting, and performance estimation. 6. Best Practices and Common Mistakes Learn when Linear Regression works best and when it does not. Avoid common beginner mistakes such as poor data scaling and misinterpreting results. By the end of this chapter, you will clearly understand Linear Regression from both a *mathematical perspective* and a **practical implementation point of view**. This strong foundation will help you move confidently into more advanced regression techniques later in the series. Useful Links: GitHub: https://github.com/Ezee-Kits/ YouTube: / @ezee_kits Email: ezeekits@gmail.com #Python #MachineLearning #LinearRegression #ScikitLearn #DataScience #PythonTutorial #LearnPython #Regression #MLForBeginners #PythonProgramming #AI #DataAnalysis #DataVisualization #MLTutorial #PythonProjects #SoftwareDevelopment #Tech #PredictiveModeling