У нас вы можете посмотреть бесплатно Building a Multi-Agent RAG System with n8n: Parallel Orchestration | Qdrant Vector Store Integration или скачать в максимальном доступном качестве, видео которое было загружено на ютуб. Для загрузки выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием видео, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
In this video, we dive deep into building a Parallel Multi-Agent RAG (Retrieval-Augmented Generation) System using n8n. Moving beyond simple linear chains, this architecture demonstrates how to trigger multiple specialized AI agents simultaneously to gather comprehensive context before generating a final response. Github: https://github.com/NajiAboo/n8n-useca... https://github.com/NajiAboo/n8n-useca... Key Architectural Components: Parallel Orchestration: Learn how a single chat trigger initiates branching logic to three distinct agents: an FAQ Agent, a Service History Agent, and a Doc Agent. +1 Vector Memory & Retrieval: We utilize Qdrant as our vector store, connected via an OpenAI Embedding pipeline, to allow the FAQ agent to perform semantic searches across knowledge bases. +1 External Tool Integration: See how agents use Google Docs tools as external memory to pull real-time service history and document data. +2 Context Aggregation & Synthesis: Discover the "Merge" strategy where independent agent outputs are consolidated. A Final Agent then performs LLM formatting and tone checks to deliver a polished client response. +4 Technical Stack: The workflow is powered by n8n, utilizing the gpt-4.1-mini model for efficient processing across specialized tasks. What You Will Learn: Setting up the n8n-nodes-langchain agentic framework. Configuring Async/Parallel execution for reduced latency. Connecting Qdrant for long-term vector memory. Using the Merge Node to synchronize multi-agent outputs for a Final Agent synthesis.