Русские видео

Сейчас в тренде

Иностранные видео




Если кнопки скачивания не загрузились НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу страницы.
Спасибо за использование сервиса ClipSaver.ru



How I Understand Diffusion Models

Diffusion models are powerful generative models that enable many successful applications like image, video, and 3D generation from texts. In this tutorial, I share my understanding of the diffusion model basics, including training, guidance, resolution, and speed. Below are some other great resources to learn more about diffusion models. ===== Slides ===== Here are the slides used in this video Training: https://bit.ly/3WudEPH Guidance: https://bit.ly/3wedCky Resolution: https://bit.ly/4bqxHmo Speed: https://bit.ly/4bpJzoJ ===== Tutorials ===== [CVPR 2022 Tutorial] Denoising Diffusion-based Generative Modeling: Foundations and Applications https://cvpr2022-tutorial-diffusion-m... [CVPR 2023 Tutorial] Denoising Diffusion Models: A Generative Learning Big Bang https://cvpr2023-tutorial-diffusion-m... [A short course by DeepLearning.AI] How Diffusion Models Work    • How Diffusion Models Work: A short co...   ===== Training ===== [Sohl-Dickstein et al. 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics https://arxiv.org/abs/1503.03585 [Ho et al. 2020]: Denoising Diffusion Probabilistic Models https://arxiv.org/abs/2006.11239 [Luo 2022] Understanding Diffusion Models: A Unified Perspective https://arxiv.org/abs/2208.11970 [Karras et al. 2022] Elucidating the design space of diffusion-based generative models https://arxiv.org/abs/2206.00364 [Karras et al. 2023] Analyzing and Improving the Training Dynamics of Diffusion Models https://arxiv.org/abs/2312.02696 ===== Guidance ===== [Dhariwal and Nichol 2021] Diffusion Models Beat GANs on Image Synthesis https://arxiv.org/abs/2105.05233 [Ho and Salimans 2022] Classifier-Free Diffusion Guidance https://arxiv.org/abs/2207.12598 [Sander Dieleman 2022] Guidance: a cheat code for diffusion models https://sander.ai/2022/05/26/guidance... [Sander Dieleman 2023] The geometry of diffusion guidance https://sander.ai/2023/08/28/geometry... ===== Resolution ===== [Ho et al. 2021] Cascaded Diffusion Models for High Fidelity Image Generation https://arxiv.org/abs/2106.15282 [Saharia et al. 2022] Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding https://arxiv.org/abs/2205.11487 [Rombach et al. 2021] High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/abs/2112.10752 [Vahdat et al. 2021] Score-based Generative Modeling in Latent Space https://proceedings.neurips.cc/paper_... [Podell et al. 2023] SDXL: Improving Latent Diffusion Models for High-resolution Image Synthesis https://arxiv.org/abs/2307.01952 [Hoogeboom et al. 2023] Simple diffusion: End-to-end diffusion for high resolution images https://arxiv.org/abs/2301.11093 [Chen et al. 2023] On the importance of noise scheduling for diffusion models https://arxiv.org/abs/2301.10972 [Gu et al. 2023] Matryoshka Diffusion Models https://arxiv.org/abs/2310.15111 ===== Speed ===== [Song et al. 2021] Denoising Diffusion Implicit Models https://arxiv.org/abs/2010.02502 [Salimans and Ho 2022] Progressive Distillation for Fast Sampling of Diffusion Models https://arxiv.org/abs/2202.00512 [Meng et al. 2023] On Distillation of Guided Diffusion Models https://arxiv.org/abs/2210.03142 [Song et al. 2023] Consistency models https://arxiv.org/abs/2303.01469 [Luo et al. 2023] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference https://arxiv.org/abs/2310.04378 [Luo et al. 2023] LCM-LoRA: A Universal Stable-Diffusion Acceleration Module https://arxiv.org/abs/2311.05556 [Sauer et al. 2023] Adversarial Diffusion Distillation https://arxiv.org/abs/2311.17042 [Yin et al. 2023] One-step Diffusion with Distribution Matching Distillation https://arxiv.org/abs/2311.18828

Comments