У нас вы можете посмотреть бесплатно How I Understand Diffusion Models или скачать в максимальном доступном качестве, которое было загружено на ютуб. Для скачивания выберите вариант из формы ниже:
Если кнопки скачивания не
загрузились
НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если возникают проблемы со скачиванием, пожалуйста напишите в поддержку по адресу внизу
страницы.
Спасибо за использование сервиса ClipSaver.ru
Diffusion models are powerful generative models that enable many successful applications like image, video, and 3D generation from texts. In this tutorial, I share my understanding of the diffusion model basics, including training, guidance, resolution, and speed. Below are some other great resources to learn more about diffusion models. ===== Slides ===== Here are the slides used in this video Training: https://bit.ly/3WudEPH Guidance: https://bit.ly/3wedCky Resolution: https://bit.ly/4bqxHmo Speed: https://bit.ly/4bpJzoJ ===== Tutorials ===== [CVPR 2022 Tutorial] Denoising Diffusion-based Generative Modeling: Foundations and Applications https://cvpr2022-tutorial-diffusion-m... [CVPR 2023 Tutorial] Denoising Diffusion Models: A Generative Learning Big Bang https://cvpr2023-tutorial-diffusion-m... [A short course by DeepLearning.AI] How Diffusion Models Work • How Diffusion Models Work: A short co... ===== Training ===== [Sohl-Dickstein et al. 2015] Deep Unsupervised Learning using Nonequilibrium Thermodynamics https://arxiv.org/abs/1503.03585 [Ho et al. 2020]: Denoising Diffusion Probabilistic Models https://arxiv.org/abs/2006.11239 [Luo 2022] Understanding Diffusion Models: A Unified Perspective https://arxiv.org/abs/2208.11970 [Karras et al. 2022] Elucidating the design space of diffusion-based generative models https://arxiv.org/abs/2206.00364 [Karras et al. 2023] Analyzing and Improving the Training Dynamics of Diffusion Models https://arxiv.org/abs/2312.02696 ===== Guidance ===== [Dhariwal and Nichol 2021] Diffusion Models Beat GANs on Image Synthesis https://arxiv.org/abs/2105.05233 [Ho and Salimans 2022] Classifier-Free Diffusion Guidance https://arxiv.org/abs/2207.12598 [Sander Dieleman 2022] Guidance: a cheat code for diffusion models https://sander.ai/2022/05/26/guidance... [Sander Dieleman 2023] The geometry of diffusion guidance https://sander.ai/2023/08/28/geometry... ===== Resolution ===== [Ho et al. 2021] Cascaded Diffusion Models for High Fidelity Image Generation https://arxiv.org/abs/2106.15282 [Saharia et al. 2022] Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding https://arxiv.org/abs/2205.11487 [Rombach et al. 2021] High-Resolution Image Synthesis with Latent Diffusion Models https://arxiv.org/abs/2112.10752 [Vahdat et al. 2021] Score-based Generative Modeling in Latent Space https://proceedings.neurips.cc/paper_... [Podell et al. 2023] SDXL: Improving Latent Diffusion Models for High-resolution Image Synthesis https://arxiv.org/abs/2307.01952 [Hoogeboom et al. 2023] Simple diffusion: End-to-end diffusion for high resolution images https://arxiv.org/abs/2301.11093 [Chen et al. 2023] On the importance of noise scheduling for diffusion models https://arxiv.org/abs/2301.10972 [Gu et al. 2023] Matryoshka Diffusion Models https://arxiv.org/abs/2310.15111 ===== Speed ===== [Song et al. 2021] Denoising Diffusion Implicit Models https://arxiv.org/abs/2010.02502 [Salimans and Ho 2022] Progressive Distillation for Fast Sampling of Diffusion Models https://arxiv.org/abs/2202.00512 [Meng et al. 2023] On Distillation of Guided Diffusion Models https://arxiv.org/abs/2210.03142 [Song et al. 2023] Consistency models https://arxiv.org/abs/2303.01469 [Luo et al. 2023] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference https://arxiv.org/abs/2310.04378 [Luo et al. 2023] LCM-LoRA: A Universal Stable-Diffusion Acceleration Module https://arxiv.org/abs/2311.05556 [Sauer et al. 2023] Adversarial Diffusion Distillation https://arxiv.org/abs/2311.17042 [Yin et al. 2023] One-step Diffusion with Distribution Matching Distillation https://arxiv.org/abs/2311.18828